Bibilographie

Méthode de quantification de l'incertitudes

  1.  J. A. S. Witteveen. Efficient and robust uncertainty quantification for computational fluid dynamics and fluid-structure interaction. PhD thesis, Delft University of Technology, Faculty of Aerospace Engineering, Department of Aerodynamics, P.O. Box 5058, 2600 GB Delft, The Netherlands, april 2009.
  2. G. J. A. Loeven. Efficient uncertainty quantification in computational fluid dynamics. PhD thesis, Delft University of Technology, Faculty of Aerospace Engineering, Department of Aerodynamics, P.O. Box 5058, 2600 GB Delft, The Netherlands, june 2010.
  3. N. Metropolis and S. Ulam. The monte carlo methods. Journal of the American Statistical Association, 44(247) :335–341, September 1949.
  4. M. D. Mc Kay, R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting values of imput variables in the analysis of output from a computer code. Technometrics, 21(2) :239–245, May 1979.
  5. N. Wiener. The homogeneous chaos. American Journal of Mathematics, 60(4) :897–936, 1938.
  6. D. Xiu and G. E. M. Karniadakis. The wiener-askey polynomial chaos for stochastic differential equations. SIAM journal on scientific computing, 24(2) :619–644, 2003.
  7. J. A. S. Witteveen and H. Bijl. Modeling arbitrary uncertainties using gram-schmidt polynomial chaos. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 2006.
  8. R. G. Ghanem. Ingredients or a general purpose stochasitic finite elements implementation. Computer and Methods in Applied Mechanics and Engineering, 168 :19–34, 1999.
  9. S. Hosder, R. W. Walters, and M. Balch. Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables. In Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, April 2007
  10. L. Mathelin and M. Y. Hussaini. A stochastic collocation algorithm for uncertainty analysis. Technical report, NASA Langley Research Center, 2003.
  11. G. J. A. Loeven, J. A. S. Witteveen, and H. Bijl. Probabilistic collocation : an efficient non-intrusive approach for arbitrarily distributed parametric uncertainties. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 2007.
  12. D. Xiu and J. Hesthaven. High order collocation methods for differential equations with random inputs. SIAM Journal on Scientific Computing, 27(3) :1118–1139, 2005.
  13. O. Le Maître. Développement en polynômes de chaos d'un modèle lagrangien d'écoulement autour d’un profil. C. R. Mecanique, 334 :693–699, 2006.