1 | %'calc_field': defines fields (velocity, vort, div...) from civx data and calculate them
|
---|
2 | %---------------------------------------------------------------------
|
---|
3 | % [DataOut,errormsg]=calc_field(FieldName,DataIn)
|
---|
4 | %
|
---|
5 | % OUTPUT:
|
---|
6 | % Scal: matlab vector representing the scalar values (length nbvec defined by var_read)
|
---|
7 | % if no input, Scal=list of programmed scalar names (to put in menus)
|
---|
8 | % if only the field name is put as input, vec_A=type of scalar, which can be:
|
---|
9 | % 'discrete': related to the individual velocity vectors, not interpolated by patch
|
---|
10 | % 'vel': scalar calculated solely from velocity components
|
---|
11 | % 'der': needs spatial derivatives
|
---|
12 | % 'var': the scalar name directly corresponds to a field name in the netcdf files
|
---|
13 | % error: error flag
|
---|
14 | % error = 0; OK
|
---|
15 | % error = 1; the prescribed scalar cannot be read or calculated from available fields
|
---|
16 | %
|
---|
17 | % INPUT:
|
---|
18 | % FieldName: string representing the name of the field
|
---|
19 | % DataIn: structure representing the field, as defined in check_field_srtructure.m
|
---|
20 | %
|
---|
21 | % FUNCTION related
|
---|
22 | % varname_generator.m: determines the field names to read in the netcdf
|
---|
23 | % file, depending on the scalar
|
---|
24 |
|
---|
25 | function [DataOut,errormsg]=calc_field(FieldName,DataIn)
|
---|
26 |
|
---|
27 | %list of defined scalars to display in menus (in addition to 'ima_cor').
|
---|
28 | % a type is associated to each scalar:
|
---|
29 | % 'discrete': related to the individual velocity vectors, not interpolated by patch
|
---|
30 | % 'vel': calculated from velocity components, continuous field (interpolated with velocity)
|
---|
31 | % 'der': needs spatial derivatives
|
---|
32 | % 'var': the scalar name corresponds to a field name in the netcdf files
|
---|
33 | % a specific variable name for civ1 and civ2 fields are also associated, if
|
---|
34 | % the scalar is calculated from other fields, as explicited below
|
---|
35 |
|
---|
36 | list_field={'velocity';...%image correlation corresponding to a vel vector
|
---|
37 | 'ima_cor';...%image correlation corresponding to a vel vector
|
---|
38 | 'norm_vel';...%norm of the velocity
|
---|
39 | 'vort';...%vorticity
|
---|
40 | 'div';...%divergence
|
---|
41 | 'strain';...%rate of strain
|
---|
42 | 'u';... %u velocity component
|
---|
43 | 'v';... %v velocity component
|
---|
44 | 'w';... %w velocity component
|
---|
45 | 'w_normal';... %w velocity component normal to the plane
|
---|
46 | 'error'}; %error associated to a vector (for stereo or patch)
|
---|
47 | errormsg=[]; %default error message
|
---|
48 | if ~exist('FieldName','var')
|
---|
49 | DataOut=list_field;% gives the list of possible fields in the absence of input
|
---|
50 | else
|
---|
51 | if ~exist('DataIn','var')
|
---|
52 | DataIn=[];
|
---|
53 | end
|
---|
54 | if ischar(FieldName)
|
---|
55 | FieldName={FieldName};%convert a string input to a cell with one string element
|
---|
56 | end
|
---|
57 | if isfield(DataIn,'Z')&& isequal(size(DataIn.Z),size(DataIn.X))
|
---|
58 | nbcoord=3;
|
---|
59 | else
|
---|
60 | nbcoord=2;
|
---|
61 | end
|
---|
62 | ListVarName={};
|
---|
63 | ValueList={};
|
---|
64 | RoleList={};
|
---|
65 | units_cell={};
|
---|
66 | % new civ data
|
---|
67 | if isfield(DataIn,'X_SubRange')
|
---|
68 | XMax=max(max(DataIn.X_SubRange));
|
---|
69 | YMax=max(max(DataIn.Y_SubRange));
|
---|
70 | XMin=min(min(DataIn.X_SubRange));
|
---|
71 | YMin=min(min(DataIn.Y_SubRange));
|
---|
72 | Mesh=sqrt((YMax-YMin)*(XMax-XMin)/numel(DataIn.X_tps));%2D
|
---|
73 | xI=XMin:Mesh:XMax;
|
---|
74 | yI=YMin:Mesh:YMax;
|
---|
75 | [XI,YI]=meshgrid(xI,yI);
|
---|
76 | XI=reshape(XI,[],1);
|
---|
77 | YI=reshape(YI,[],1);
|
---|
78 | DataOut.ListGlobalAttribute=DataIn.ListGlobalAttribute; %reproduce global attribute
|
---|
79 | for ilist=1:numel(DataOut.ListGlobalAttribute)
|
---|
80 | eval(['DataOut.' DataOut.ListGlobalAttribute{ilist} '=DataIn.' DataIn.ListGlobalAttribute{ilist} ';'])
|
---|
81 | end
|
---|
82 | DataOut.ListVarName={'coord_y','coord_x','FF'};
|
---|
83 | DataOut.VarDimName{1}='coord_y';
|
---|
84 | DataOut.VarDimName{2}='coord_x';
|
---|
85 | DataOut.coord_y=[yI(1) yI(end)];
|
---|
86 | DataOut.coord_x=[xI(1) xI(end)];
|
---|
87 | DataOut.U=zeros(size(XI));
|
---|
88 | DataOut.V=zeros(size(XI));
|
---|
89 | DataOut.vort=zeros(size(XI));
|
---|
90 | DataOut.div=zeros(size(XI));
|
---|
91 | nbval=zeros(size(XI));
|
---|
92 | [NbSubDomain,xx]=size(DataIn.X_SubRange);
|
---|
93 | for isub=1:NbSubDomain
|
---|
94 | nbvec_sub=DataIn.NbSites(isub);
|
---|
95 | ind_sel=find(XI>=DataIn.X_SubRange(isub,1) & XI<=DataIn.X_SubRange(isub,2) & YI>=DataIn.Y_SubRange(isub,1) & YI<=DataIn.Y_SubRange(isub,2));
|
---|
96 | %rho smoothing parameter
|
---|
97 | epoints = [XI(ind_sel) YI(ind_sel)];% coordinates of interpolation sites
|
---|
98 | ctrs=[DataIn.X_tps(1:nbvec_sub,isub) DataIn.Y_tps(1:nbvec_sub,isub)];%(=initial points) ctrs
|
---|
99 | nbval(ind_sel)=nbval(ind_sel)+1;% records the number of values for eacn interpolation point (in case of subdomain overlap)
|
---|
100 | % PM = [ones(size(epoints,1),1) epoints];
|
---|
101 | switch FieldName{1}
|
---|
102 | case {'velocity','u','v'}
|
---|
103 | % DM_eval = DistanceMatrix(epoints,ctrs);%2D matrix of distances between extrapolation points epoints and spline centres (=site points) ctrs
|
---|
104 | % EM = tps(1,DM_eval);%values of thin plate
|
---|
105 | EM = tps_eval(epoints,ctrs);
|
---|
106 | case{'vort','div'}
|
---|
107 | [EMDX,EMDY] = tps_eval_dxy(epoints,ctrs);%2D matrix of distances between extrapolation points epoints and spline centres (=site points) ctrs
|
---|
108 |
|
---|
109 | end
|
---|
110 | switch FieldName{1}
|
---|
111 | case 'velocity'
|
---|
112 | ListFields={'U', 'V'};
|
---|
113 | VarAttributes{1}.Role='vector_x';
|
---|
114 | VarAttributes{2}.Role='vector_y';
|
---|
115 | DataOut.U(ind_sel)=DataOut.U(ind_sel)+EM *DataIn.U_tps(1:nbvec_sub+3,isub);
|
---|
116 | DataOut.V(ind_sel)=DataOut.V(ind_sel)+EM *DataIn.V_tps(1:nbvec_sub+3,isub);
|
---|
117 | case 'u'
|
---|
118 | ListFields={'U'};
|
---|
119 | VarAttributes{1}.Role='scalar';
|
---|
120 | DataOut.U(ind_sel)=DataOut.U(ind_sel)+EM *DataIn.U_tps(1:nbvec_sub+3,isub);
|
---|
121 | case 'v'
|
---|
122 | ListFields={'V'};
|
---|
123 | VarAttributes{1}.Role='scalar';
|
---|
124 | DataOut.V(ind_sel)=DataOut.V(ind_sel)+EM *DataIn.V_tps(1:nbvec_sub+3,isub);
|
---|
125 | case 'vort'
|
---|
126 | ListFields={'vort'};
|
---|
127 | VarAttributes{1}.Role='scalar';
|
---|
128 | % EMX = [DMXY(:,:,1) PM];
|
---|
129 | % EMY = [DMXY(:,:,2) PM];
|
---|
130 | % DataIn.U_tps(nbvec_sub+1,isub)=0;%constant value suppressed by spatial derivatives
|
---|
131 | % DataIn.V_tps(nbvec_sub+1,isub)=0;%constant value suppressed by spatial derivatives
|
---|
132 | % DataIn.V_tps(nbvec_sub+2,isub)=0;% X coefficient suppressed for x wise derivatives
|
---|
133 | % DataIn.U_tps(nbvec_sub+3,isub)=0;% Y coefficient suppressed for x wise derivatives
|
---|
134 | DataOut.vort(ind_sel)=DataOut.vort(ind_sel)+EMDY *DataIn.U_tps(1:nbvec_sub+3,isub)-EMDX *DataIn.V_tps(1:nbvec_sub+3,isub);
|
---|
135 | case 'div'
|
---|
136 | ListFields={'div'};
|
---|
137 | VarAttributes{1}.Role='scalar';
|
---|
138 | % EMX = [DMXY(:,:,1) PM];
|
---|
139 | % EMY = [DMXY(:,:,2) PM];
|
---|
140 | % DataIn.U_tps(nbvec_sub+1,isub)=0;%constant value suppressed by spatial derivatives
|
---|
141 | % DataIn.V_tps(nbvec_sub+1,isub)=0;%constant value suppressed by spatial derivatives
|
---|
142 | % DataIn.V_tps(nbvec_sub+2,isub)=0;% X coefficient suppressed for x wise derivatives
|
---|
143 | % DataIn.U_tps(nbvec_sub+3,isub)=0;% Y coefficient suppressed for x wise derivatives
|
---|
144 | DataOut.div(ind_sel)=DataOut.div(ind_sel)+EMDX*DataIn.U_tps(1:nbvec_sub+3,isub)+EMDY *DataIn.V_tps(1:nbvec_sub+3,isub);
|
---|
145 | end
|
---|
146 | end
|
---|
147 | DataOut.FF=nbval==0; %put errorflag to 1 for points outside the interpolation rang
|
---|
148 |
|
---|
149 | DataOut.FF=reshape(DataOut.FF,numel(yI),numel(xI));
|
---|
150 | nbval(nbval==0)=1;
|
---|
151 | DataOut.U=DataOut.U ./nbval;
|
---|
152 | DataOut.V=DataOut.V ./nbval;
|
---|
153 | DataOut.U=reshape(DataOut.U,numel(yI),numel(xI));
|
---|
154 | DataOut.V=reshape(DataOut.V,numel(yI),numel(xI));
|
---|
155 | DataOut.vort=reshape(DataOut.vort,numel(yI),numel(xI));
|
---|
156 | DataOut.div=reshape(DataOut.div,numel(yI),numel(xI));
|
---|
157 | DataOut.ListVarName=[DataOut.ListVarName ListFields];
|
---|
158 | for ilist=3:numel(DataOut.ListVarName)
|
---|
159 | DataOut.VarDimName{ilist}={'coord_y','coord_x'};
|
---|
160 | end
|
---|
161 | DataOut.VarAttribute={[],[]};
|
---|
162 | DataOut.VarAttribute{3}.Role='errorflag';
|
---|
163 | DataOut.VarAttribute=[DataOut.VarAttribute VarAttributes];
|
---|
164 | else
|
---|
165 | DataOut=DataIn;
|
---|
166 | for ilist=1:length(FieldName)
|
---|
167 | if ~isempty(FieldName{ilist})
|
---|
168 | [VarName,Value,Role,units]=feval(FieldName{ilist},DataIn);%calculate field with appropriate function named FieldName{ilist}
|
---|
169 | ListVarName=[ListVarName VarName];
|
---|
170 | ValueList=[ValueList Value];
|
---|
171 | RoleList=[RoleList Role];
|
---|
172 | units_cell=[units_cell units];
|
---|
173 | end
|
---|
174 | end
|
---|
175 | %erase previous data (except coordinates)
|
---|
176 | for ivar=nbcoord+1:length(DataOut.ListVarName)
|
---|
177 | VarName=DataOut.ListVarName{ivar};
|
---|
178 | DataOut=rmfield(DataOut,VarName);
|
---|
179 | end
|
---|
180 | DataOut.ListVarName=DataOut.ListVarName(1:nbcoord);
|
---|
181 | if isfield(DataOut,'VarDimName')
|
---|
182 | DataOut.VarDimName=DataOut.VarDimName(1:nbcoord);
|
---|
183 | else
|
---|
184 | errormsg='element .VarDimName missing in input data';
|
---|
185 | return
|
---|
186 | end
|
---|
187 | DataOut.VarAttribute=DataOut.VarAttribute(1:nbcoord);
|
---|
188 | %append new data
|
---|
189 | DataOut.ListVarName=[DataOut.ListVarName ListVarName];
|
---|
190 | for ivar=1:length(ListVarName)
|
---|
191 | DataOut.VarDimName{nbcoord+ivar}=DataOut.VarDimName{1};
|
---|
192 | DataOut.VarAttribute{nbcoord+ivar}.Role=RoleList{ivar};
|
---|
193 | DataOut.VarAttribute{nbcoord+ivar}.units=units_cell{ivar};
|
---|
194 | eval(['DataOut.' ListVarName{ivar} '=ValueList{ivar};'])
|
---|
195 | end
|
---|
196 | end
|
---|
197 | end
|
---|
198 |
|
---|
199 |
|
---|
200 | %%%%%%%%%%%%% velocity fieldn%%%%%%%%%%%%%%%%%%%%
|
---|
201 | function [VarName,ValCell,Role,units_cell]=velocity(DataIn)
|
---|
202 | VarName={};
|
---|
203 | ValCell={};
|
---|
204 | Role={};
|
---|
205 | units_cell={};
|
---|
206 | if isfield(DataIn,'CoordUnit') && isfield(DataIn,'TimeUnit')
|
---|
207 | units=[DataIn.CoordUnit '/' DataIn.TimeUnit];
|
---|
208 | else
|
---|
209 | units='pixel';
|
---|
210 | end
|
---|
211 | if isfield(DataIn,'U')
|
---|
212 | VarName=[VarName {'U'}];
|
---|
213 | ValCell=[ValCell {DataIn.U}];
|
---|
214 | Role=[Role {'vector_x'}];
|
---|
215 | units_cell=[units_cell {units}];
|
---|
216 | end
|
---|
217 | if isfield(DataIn,'V')
|
---|
218 | VarName=[VarName {'V'}];
|
---|
219 | ValCell=[ValCell {DataIn.V}];
|
---|
220 | Role=[Role {'vector_y'}];
|
---|
221 | units_cell=[units_cell {units}];
|
---|
222 | end
|
---|
223 | if isfield(DataIn,'W')
|
---|
224 | VarName=[VarName {'W'}];
|
---|
225 | ValCell=[ValCell {DataIn.W}];
|
---|
226 | Role=[Role {'vector_z'}];
|
---|
227 | units_cell=[units_cell {units}];
|
---|
228 | end
|
---|
229 | if isfield(DataIn,'F')
|
---|
230 | VarName=[VarName {'F'}];
|
---|
231 | ValCell=[ValCell {DataIn.F}];
|
---|
232 | Role=[Role {'warnflag'}];
|
---|
233 | units_cell=[units_cell {[]}];
|
---|
234 | end
|
---|
235 | if isfield(DataIn,'FF')
|
---|
236 | VarName=[VarName,{'FF'}];
|
---|
237 | ValCell=[ValCell {DataIn.FF}];
|
---|
238 | Role=[Role {'errorflag'}];
|
---|
239 | units_cell=[units_cell {[]}];
|
---|
240 | end
|
---|
241 |
|
---|
242 | %%%%%%%%%%%%% ima cor%%%%%%%%%%%%%%%%%%%%
|
---|
243 | function [VarName,ValCell,Role,units]=ima_cor(DataIn)
|
---|
244 | VarName={};
|
---|
245 | ValCell={};
|
---|
246 | Role={};
|
---|
247 | units={};
|
---|
248 | if isfield(DataIn,'C')
|
---|
249 | VarName{1}='C';
|
---|
250 | ValCell{1}=DataIn.C;
|
---|
251 | Role={'ancillary'};
|
---|
252 | units={[]};
|
---|
253 | end
|
---|
254 |
|
---|
255 | %%%%%%%%%%%%% norm_vec %%%%%%%%%%%%%%%%%%%%
|
---|
256 | function [VarName,ValCell,Role,units]=norm_vel(DataIn)
|
---|
257 | VarName={};
|
---|
258 | ValCell={};
|
---|
259 | Role={};
|
---|
260 | units={};
|
---|
261 | if isfield(DataIn,'U') && isfield(DataIn,'V')
|
---|
262 | VarName{1}='norm_vel';
|
---|
263 | ValCell{1}=DataIn.U.*DataIn.U+ DataIn.V.*DataIn.V;
|
---|
264 | if isfield(DataIn,'W') && isequal(size(DataIn.W),size(DataIn.U))
|
---|
265 | ValCell{1}=ValCell{1}+DataIn.W.*DataIn.W;
|
---|
266 | end
|
---|
267 | ValCell{1}=sqrt(ValCell{1});
|
---|
268 | Role{1}='scalar';
|
---|
269 | if isfield(DataIn,'CoordUnit') && isfield(DataIn,'TimeUnit')
|
---|
270 | units={[DataIn.CoordUnit '/' DataIn.TimeUnit]};
|
---|
271 | else
|
---|
272 | units={'pixel'};
|
---|
273 | end
|
---|
274 | end
|
---|
275 |
|
---|
276 |
|
---|
277 |
|
---|
278 | %%%%%%%%%%%%% vorticity%%%%%%%%%%%%%%%%%%%%
|
---|
279 | function [VarName,ValCell,Role,units]=vort(DataIn)
|
---|
280 | VarName={};
|
---|
281 | ValCell={};
|
---|
282 | Role={};
|
---|
283 | units={};
|
---|
284 | if isfield(DataIn,'DjUi')
|
---|
285 | VarName{1}='vort';
|
---|
286 | ValCell{1}=DataIn.DjUi(:,1,2)-DataIn.DjUi(:,2,1); %vorticity
|
---|
287 | siz=size(ValCell{1});
|
---|
288 | ValCell{1}=reshape(ValCell{1},siz(1),1);
|
---|
289 | Role{1}='scalar';
|
---|
290 | if isfield(DataIn,'TimeUnit')
|
---|
291 | units={[DataIn.TimeUnit '-1']};
|
---|
292 | else
|
---|
293 | units={[]};
|
---|
294 | end
|
---|
295 | end
|
---|
296 |
|
---|
297 | %%%%%%%%%%%%% divergence%%%%%%%%%%%%%%%%%%%%
|
---|
298 | function [VarName,ValCell,Role,units]=div(DataIn)
|
---|
299 | VarName={};
|
---|
300 | ValCell={};
|
---|
301 | Role={};
|
---|
302 | units={};
|
---|
303 | if isfield(DataIn,'DjUi')
|
---|
304 | VarName{1}='div';
|
---|
305 | ValCell{1}=DataIn.DjUi(:,1,1)+DataIn.DjUi(:,2,2); %DUDX+DVDY
|
---|
306 | siz=size(ValCell{1});
|
---|
307 | ValCell{1}=reshape(ValCell{1},siz(1),1);
|
---|
308 | Role{1}='scalar';
|
---|
309 | if isfield(DataIn,'TimeUnit')
|
---|
310 | units={[DataIn.TimeUnit '-1']};
|
---|
311 | else
|
---|
312 | units={[]};
|
---|
313 | end
|
---|
314 | end
|
---|
315 |
|
---|
316 | %%%%%%%%%%%%% strain %%%%%%%%%%%%%%%%%%%%
|
---|
317 | function [VarName,ValCell,Role,units]=strain(DataIn)
|
---|
318 | VarName={};
|
---|
319 | ValCell={};
|
---|
320 | Role={};
|
---|
321 | units={};
|
---|
322 | if isfield(DataIn,'DjUi')
|
---|
323 | VarName{1}='strain';
|
---|
324 | ValCell{1}=DataIn.DjUi(:,1,2)+DataIn.DjUi(:,2,1);%DVDX+DUDY
|
---|
325 | siz=size(ValCell{1});
|
---|
326 | ValCell{1}=reshape(ValCell{1},siz(1),1);
|
---|
327 | Role{1}='scalar';
|
---|
328 | if isfield(DataIn,'TimeUnit')
|
---|
329 | units={[DataIn.TimeUnit '-1']};
|
---|
330 | else
|
---|
331 | units={[]};
|
---|
332 | end
|
---|
333 | end
|
---|
334 |
|
---|
335 | %%%%%%%%%%%%% u %%%%%%%%%%%%%%%%%%%%
|
---|
336 | function [VarName,ValCell,Role,units]=u(DataIn)
|
---|
337 | VarName={};
|
---|
338 | ValCell={};
|
---|
339 | Role={};
|
---|
340 | units={};
|
---|
341 | if isfield(DataIn,'U')
|
---|
342 | VarName{1}='U';
|
---|
343 | ValCell{1}=DataIn.U;
|
---|
344 | Role{1}='scalar';
|
---|
345 | if isfield(DataIn,'CoordUnit') && isfield(DataIn,'TimeUnit')
|
---|
346 | units={[DataIn.CoordUnit '/' DataIn.TimeUnit]};
|
---|
347 | else
|
---|
348 | units={'pixel'};
|
---|
349 | end
|
---|
350 | end
|
---|
351 |
|
---|
352 | %%%%%%%%%%%%% v %%%%%%%%%%%%%%%%%%%%
|
---|
353 | function [VarName,ValCell,Role,units]=v(DataIn)
|
---|
354 | VarName={};
|
---|
355 | ValCell={};
|
---|
356 | Role={};
|
---|
357 | units={};
|
---|
358 | if isfield(DataIn,'V')
|
---|
359 | VarName{1}='V';
|
---|
360 | ValCell{1}=DataIn.V;
|
---|
361 | Role{1}='scalar';
|
---|
362 | if isfield(DataIn,'CoordUnit') && isfield(DataIn,'TimeUnit')
|
---|
363 | units={[DataIn.CoordUnit '/' DataIn.TimeUnit]};
|
---|
364 | else
|
---|
365 | units={'pixel'};
|
---|
366 | end
|
---|
367 | end
|
---|
368 |
|
---|
369 | %%%%%%%%%%%%% w %%%%%%%%%%%%%%%%%%%%
|
---|
370 | function [VarName,ValCell,Role,units]=w(DataIn)
|
---|
371 | VarName={};
|
---|
372 | ValCell={};
|
---|
373 | Role={};
|
---|
374 | units={};
|
---|
375 | if isfield(DataIn,'W')
|
---|
376 | VarName{1}='W';
|
---|
377 | ValCell{1}=DataIn.W;
|
---|
378 | Role{1}='scalar';%will remain unchanged by projection
|
---|
379 | if isfield(DataIn,'CoordUnit') && isfield(DataIn,'TimeUnit')
|
---|
380 | units={[DataIn.CoordUnit '/' DataIn.TimeUnit]};
|
---|
381 | else
|
---|
382 | units={'pixel'};
|
---|
383 | end
|
---|
384 | end
|
---|
385 |
|
---|
386 | %%%%%%%%%%%%% w_normal %%%%%%%%%%%%%%%%%%%%
|
---|
387 | function [VarName,ValCell,Role,units]=w_normal(DataIn)
|
---|
388 | VarName={};
|
---|
389 | ValCell={};
|
---|
390 | Role={};
|
---|
391 | units={};
|
---|
392 | if isfield(DataIn,'W')
|
---|
393 | VarName{1}='W';
|
---|
394 | ValCell{1}=DataIn.W;
|
---|
395 | Role{1}='vector_z';%will behave like a vector component by projection
|
---|
396 | if isfield(DataIn,'CoordUnit') && isfield(DataIn,'TimeUnit')
|
---|
397 | units={[DataIn.CoordUnit '/' DataIn.TimeUnit]};
|
---|
398 | else
|
---|
399 | units={'pixel'};
|
---|
400 | end
|
---|
401 | end
|
---|
402 |
|
---|
403 | %%%%%%%%%%%%% error %%%%%%%%%%%%%%%%%%%%
|
---|
404 | function [VarName,ValCell,Role,units]=error(DataIn)
|
---|
405 | VarName={};
|
---|
406 | ValCell={};
|
---|
407 | Role={};
|
---|
408 | units={};
|
---|
409 | if isfield(DataIn,'E')
|
---|
410 | VarName{1}='E';
|
---|
411 | ValCell{1}=DataIn.E;
|
---|
412 | Role{1}='ancillary'; %TODO CHECK units in actual fields
|
---|
413 | if isfield(DataIn,'CoordUnit') && isfield(DataIn,'TimeUnit')
|
---|
414 | units={[DataIn.CoordUnit '/' DataIn.TimeUnit]};
|
---|
415 | else
|
---|
416 | units={'pixel'};
|
---|
417 | end
|
---|
418 | end
|
---|
419 |
|
---|