1 | %-------------------------------------------------------------------------- |
---|
2 | % 'civ': function adapted from PIVlab http://pivlab.blogspot.com/ |
---|
3 | % function [xtable ytable utable vtable typevector] = civ (image1,image2,ibx,iby step, subpixfinder, mask, roi) |
---|
4 | % |
---|
5 | % OUTPUT: |
---|
6 | % xtable: set of x coordinates |
---|
7 | % ytable: set of y coordinates |
---|
8 | % utable: set of u displacements (along x) |
---|
9 | % vtable: set of v displacements (along y) |
---|
10 | % ctable: max image correlation for each vector |
---|
11 | % typevector: set of flags, =1 for good, =0 for NaN vectors |
---|
12 | % |
---|
13 | %INPUT: |
---|
14 | % par_civ: structure of input parameters, with fields: |
---|
15 | % .ImageA: first image for correlation (matrix) |
---|
16 | % .ImageB: second image for correlation(matrix) |
---|
17 | % .CorrBoxSize: 1,2 vector giving the size of the correlation box in x and y |
---|
18 | % .SearchBoxSize: 1,2 vector giving the size of the search box in x and y |
---|
19 | % .SearchBoxShift: 1,2 vector or 2 column matrix (for civ2) giving the shift of the search box in x and y |
---|
20 | % .CorrSmooth: =1 or 2 determines the choice of the sub-pixel determination of the correlation max |
---|
21 | % .ImageWidth: nb of pixels of the image in x |
---|
22 | % .Dx, Dy: mesh for the PIV calculation |
---|
23 | % .Grid: grid giving the PIV calculation points (alternative to .Dx .Dy): centres of the correlation boxes in Image A |
---|
24 | % .Mask: name of a mask file or mask image matrix itself |
---|
25 | % .MinIma: thresholds for image luminosity |
---|
26 | % .MaxIma |
---|
27 | % .CheckDeformation=1 for subpixel interpolation and image deformation (linear transform) |
---|
28 | % .DUDX: matrix of deformation obtained from patch at each grid point |
---|
29 | % .DUDY |
---|
30 | % .DVDX: |
---|
31 | % .DVDY |
---|
32 | |
---|
33 | function [xtable,ytable,utable,vtable,ctable,FF,result_conv,errormsg] = civ (par_civ) |
---|
34 | |
---|
35 | %% check input images |
---|
36 | par_civ.ImageA=sum(double(par_civ.ImageA),3);%sum over rgb component for color images |
---|
37 | par_civ.ImageB=sum(double(par_civ.ImageB),3); |
---|
38 | [npy_ima,npx_ima]=size(par_civ.ImageA); |
---|
39 | if ~isequal(size(par_civ.ImageB),[npy_ima npx_ima]) |
---|
40 | errormsg='image pair with unequal size'; |
---|
41 | return |
---|
42 | end |
---|
43 | |
---|
44 | %% prepare measurement grid if not given as input |
---|
45 | if ~isfield(par_civ,'Grid')% grid points defining central positions of the sub-images in image A |
---|
46 | nbinterv_x=floor((npx_ima-1)/par_civ.Dx); |
---|
47 | gridlength_x=nbinterv_x*par_civ.Dx; |
---|
48 | minix=ceil((npx_ima-gridlength_x)/2); |
---|
49 | nbinterv_y=floor((npy_ima-1)/par_civ.Dy); |
---|
50 | gridlength_y=nbinterv_y*par_civ.Dy; |
---|
51 | miniy=ceil((npy_ima-gridlength_y)/2); |
---|
52 | [GridX,GridY]=meshgrid(minix:par_civ.Dx:npx_ima-1,miniy:par_civ.Dy:npy_ima-1); |
---|
53 | par_civ.Grid(:,1)=reshape(GridX,[],1); |
---|
54 | par_civ.Grid(:,2)=reshape(GridY,[],1);% increases with array index |
---|
55 | end |
---|
56 | nbvec=size(par_civ.Grid,1); |
---|
57 | |
---|
58 | |
---|
59 | %% prepare correlation and search boxes |
---|
60 | CorrBoxSizeX=par_civ.CorrBoxSize(:,1); |
---|
61 | CorrBoxSizeY=par_civ.CorrBoxSize(:,2); |
---|
62 | if size(par_civ.CorrBoxSize,1)==1 |
---|
63 | CorrBoxSizeX=par_civ.CorrBoxSize(1)*ones(nbvec,1); |
---|
64 | CorrBoxSizeY=par_civ.CorrBoxSize(2)*ones(nbvec,1); |
---|
65 | end |
---|
66 | |
---|
67 | shiftx=par_civ.SearchBoxShift(:,1);%use the input shift estimate, rounded to the next integer value |
---|
68 | shifty=-par_civ.SearchBoxShift(:,2);% sign minus because image j index increases when y decreases |
---|
69 | if numel(shiftx)==1% case of a unique shift for the whole field( civ1) |
---|
70 | shiftx=shiftx*ones(nbvec,1); |
---|
71 | shifty=shifty*ones(nbvec,1); |
---|
72 | end |
---|
73 | |
---|
74 | %% shift the grid by half the expected displacement to get the velocity closer to the initial grid |
---|
75 | par_civ.Grid(:,1)=par_civ.Grid(:,1)-shiftx/2; |
---|
76 | par_civ.Grid(:,2)=par_civ.Grid(:,2)+shifty/2; |
---|
77 | |
---|
78 | %% Array initialisation and default output if par_civ.CorrSmooth=0 (just the grid calculated, no civ computation) |
---|
79 | xtable=round(par_civ.Grid(:,1)+0.5)-0.5; |
---|
80 | ytable=round(npy_ima-par_civ.Grid(:,2)+0.5)-0.5;% y index corresponding to the position in image coordinates |
---|
81 | shiftx=round(shiftx); |
---|
82 | shifty=round(shifty); |
---|
83 | utable=shiftx;%zeros(nbvec,1); |
---|
84 | vtable=shifty;%zeros(nbvec,1); |
---|
85 | ctable=zeros(nbvec,1); |
---|
86 | FF=zeros(nbvec,1); |
---|
87 | result_conv=[]; |
---|
88 | errormsg=''; |
---|
89 | |
---|
90 | %% prepare mask |
---|
91 | if isfield(par_civ,'Mask') && ~isempty(par_civ.Mask) |
---|
92 | if strcmp(par_civ.Mask,'all') |
---|
93 | return % get the grid only, no civ calculation |
---|
94 | elseif ischar(par_civ.Mask) |
---|
95 | par_civ.Mask=imread(par_civ.Mask);% read the mask if not allready done |
---|
96 | end |
---|
97 | end |
---|
98 | check_MinIma=isfield(par_civ,'MinIma');% test for image luminosity threshold |
---|
99 | check_MaxIma=isfield(par_civ,'MaxIma') && ~isempty(par_civ.MaxIma); |
---|
100 | |
---|
101 | %% Apply mask |
---|
102 | % Convention for mask, IDEAS NOT IMPLEMENTED |
---|
103 | % mask >200 : velocity calculated |
---|
104 | % 200 >=mask>150;velocity not calculated, interpolation allowed (bad spots) |
---|
105 | % 150>=mask >100: velocity not calculated, nor interpolated |
---|
106 | % 100>=mask> 20: velocity not calculated, impermeable (no flux through mask boundaries) |
---|
107 | % 20>=mask: velocity=0 |
---|
108 | checkmask=0; |
---|
109 | MinA=min(min(par_civ.ImageA)); |
---|
110 | if isfield(par_civ,'Mask') && ~isempty(par_civ.Mask) |
---|
111 | checkmask=1; |
---|
112 | if ~isequal(size(par_civ.Mask),[npy_ima npx_ima]) |
---|
113 | errormsg='mask must be an image with the same size as the images'; |
---|
114 | return |
---|
115 | end |
---|
116 | check_undefined=(par_civ.Mask<200 & par_civ.Mask>=20 ); |
---|
117 | end |
---|
118 | |
---|
119 | %% compute image correlations: MAINLOOP on velocity vectors |
---|
120 | sum_square=1;% default |
---|
121 | mesh=1;% default |
---|
122 | CheckDeformation=isfield(par_civ,'CheckDeformation')&& par_civ.CheckDeformation==1; |
---|
123 | if CheckDeformation |
---|
124 | mesh=0.25;%mesh in pixels for subpixel image interpolation (x 4 in each direction) |
---|
125 | par_civ.CorrSmooth=2;% use SUBPIX2DGAUSS (take into account more points near the max) |
---|
126 | end |
---|
127 | |
---|
128 | if par_civ.CorrSmooth~=0 % par_civ.CorrSmooth=0 implies no civ computation (just input image and grid points given) |
---|
129 | for ivec=1:nbvec |
---|
130 | iref=round(par_civ.Grid(ivec,1)+0.5);% xindex on the image A for the middle of the correlation box |
---|
131 | jref=round(npy_ima-par_civ.Grid(ivec,2)+0.5);% j index for the middle of the correlation box in the image A |
---|
132 | FF(ivec)=0; |
---|
133 | ibx2=floor(CorrBoxSizeX(ivec)/2); |
---|
134 | iby2=floor(CorrBoxSizeY(ivec)/2); |
---|
135 | isx2=ibx2+ceil(par_civ.SearchRange(1)); |
---|
136 | isy2=iby2+ceil(par_civ.SearchRange(2)); |
---|
137 | subrange1_x=iref-ibx2:iref+ibx2;% x indices defining the first subimage |
---|
138 | subrange1_y=jref-iby2:jref+iby2;% y indices defining the first subimage |
---|
139 | subrange2_x=iref+shiftx(ivec)-isx2:iref+shiftx(ivec)+isx2;%x indices defining the second subimage |
---|
140 | subrange2_y=jref+shifty(ivec)-isy2:jref+shifty(ivec)+isy2;%y indices defining the second subimage |
---|
141 | image1_crop=MinA*ones(numel(subrange1_y),numel(subrange1_x));% default value=min of image A |
---|
142 | image2_crop=MinA*ones(numel(subrange2_y),numel(subrange2_x));% default value=min of image A |
---|
143 | check1_x=subrange1_x>=1 & subrange1_x<=npx_ima;% check which points in the subimage 1 are contained in the initial image 1 |
---|
144 | check1_y=subrange1_y>=1 & subrange1_y<=npy_ima; |
---|
145 | check2_x=subrange2_x>=1 & subrange2_x<=npx_ima;% check which points in the subimage 2 are contained in the initial image 2 |
---|
146 | check2_y=subrange2_y>=1 & subrange2_y<=npy_ima; |
---|
147 | image1_crop(check1_y,check1_x)=par_civ.ImageA(subrange1_y(check1_y),subrange1_x(check1_x));%extract a subimage (correlation box) from image A |
---|
148 | image2_crop(check2_y,check2_x)=par_civ.ImageB(subrange2_y(check2_y),subrange2_x(check2_x));%extract a larger subimage (search box) from image B |
---|
149 | if checkmask |
---|
150 | mask1_crop=ones(numel(subrange1_y),numel(subrange1_x));% default value=1 for mask |
---|
151 | mask2_crop=ones(numel(subrange2_y),numel(subrange2_x));% default value=1 for mask |
---|
152 | mask1_crop(check1_y,check1_x)=check_undefined(subrange1_y(check1_y),subrange1_x(check1_x));%extract a mask subimage (correlation box) from image A |
---|
153 | mask2_crop(check2_y,check2_x)=check_undefined(subrange2_y(check2_y),subrange2_x(check2_x));%extract a mask subimage (search box) from image B |
---|
154 | sizemask=sum(sum(mask1_crop))/(numel(subrange1_y)*numel(subrange1_x));%size of the masked part relative to the correlation sub-image |
---|
155 | if sizemask > 1/2% eliminate point if more than half of the correlation box is masked |
---|
156 | FF(ivec)=1; % |
---|
157 | utable(ivec)=NaN; |
---|
158 | vtable(ivec)=NaN; |
---|
159 | else |
---|
160 | image1_crop=image1_crop.*~mask1_crop;% put to zero the masked pixels (mask1_crop='true'=1) |
---|
161 | image2_crop=image2_crop.*~mask2_crop; |
---|
162 | image1_mean=mean(mean(image1_crop))/(1-sizemask); |
---|
163 | image2_mean=mean(mean(image2_crop))/(1-sizemask); |
---|
164 | end |
---|
165 | else |
---|
166 | image1_mean=mean(mean(image1_crop)); |
---|
167 | image2_mean=mean(mean(image2_crop)); |
---|
168 | end |
---|
169 | %threshold on image minimum |
---|
170 | if FF(ivec)==0 |
---|
171 | if check_MinIma && (image1_mean < par_civ.MinIma || image2_mean < par_civ.MinIma) |
---|
172 | FF(ivec)=1; |
---|
173 | %threshold on image maximum |
---|
174 | elseif check_MaxIma && (image1_mean > par_civ.MaxIma || image2_mean > par_civ.MaxIma) |
---|
175 | FF(ivec)=1; |
---|
176 | end |
---|
177 | if FF(ivec)==1 |
---|
178 | utable(ivec)=NaN; |
---|
179 | vtable(ivec)=NaN; |
---|
180 | else |
---|
181 | %mask |
---|
182 | if checkmask |
---|
183 | image1_crop=(image1_crop-image1_mean).*~mask1_crop;%substract the mean, put to zero the masked parts |
---|
184 | image2_crop=(image2_crop-image2_mean).*~mask2_crop; |
---|
185 | else |
---|
186 | image1_crop=(image1_crop-image1_mean); |
---|
187 | image2_crop=(image2_crop-image2_mean); |
---|
188 | end |
---|
189 | %deformation |
---|
190 | if CheckDeformation |
---|
191 | xi=(1:mesh:size(image1_crop,2)); |
---|
192 | yi=(1:mesh:size(image1_crop,1))'; |
---|
193 | [XI,YI]=meshgrid(xi-ceil(size(image1_crop,2)/2),yi-ceil(size(image1_crop,1)/2)); |
---|
194 | XIant=XI-par_civ.DUDX(ivec)*XI+par_civ.DUDY(ivec)*YI+ceil(size(image1_crop,2)/2); |
---|
195 | YIant=YI+par_civ.DVDX(ivec)*XI-par_civ.DVDY(ivec)*YI+ceil(size(image1_crop,1)/2); |
---|
196 | image1_crop=interp2(image1_crop,XIant,YIant); |
---|
197 | image1_crop(isnan(image1_crop))=0; |
---|
198 | xi=(1:mesh:size(image2_crop,2)); |
---|
199 | yi=(1:mesh:size(image2_crop,1))'; |
---|
200 | image2_crop=interp2(image2_crop,xi,yi,'*spline'); |
---|
201 | image2_crop(isnan(image2_crop))=0; |
---|
202 | end |
---|
203 | sum_square=sum(sum(image1_crop.*image1_crop)); |
---|
204 | %reference: Oliver Pust, PIV: Direct Cross-Correlation |
---|
205 | %%%%%% correlation calculation |
---|
206 | result_conv= conv2(image2_crop,flip(flip(image1_crop,2),1),'valid'); |
---|
207 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
208 | corrmax= max(max(result_conv)); |
---|
209 | |
---|
210 | %result_conv=(result_conv/corrmax); %normalize, peak=always 255 |
---|
211 | %Find the correlation max, at 255 |
---|
212 | [y,x] = find(result_conv==corrmax,1); |
---|
213 | subimage2_crop=image2_crop(y:y+2*iby2/mesh,x:x+2*ibx2/mesh);%subimage of image 2 corresponding to the optimum displacement of first image |
---|
214 | sum_square=sum_square*sum(sum(subimage2_crop.*subimage2_crop));% product of variances of image 1 and 2 |
---|
215 | sum_square=sqrt(sum_square);% srt of the variance product to normalise correlation |
---|
216 | if ~isempty(y) && ~isempty(x) |
---|
217 | try |
---|
218 | if par_civ.CorrSmooth==1 |
---|
219 | [vector,FF(ivec)] = SUBPIXGAUSS (result_conv,x,y); |
---|
220 | elseif par_civ.CorrSmooth==2 |
---|
221 | [vector,FF(ivec)] = SUBPIX2DGAUSS (result_conv,x,y); |
---|
222 | else |
---|
223 | [vector,FF(ivec)] = quadr_fit(result_conv,x,y); |
---|
224 | end |
---|
225 | utable(ivec)=vector(1)*mesh+shiftx(ivec); |
---|
226 | vtable(ivec)=-(vector(2)*mesh+shifty(ivec)); |
---|
227 | xtable(ivec)=iref+utable(ivec)/2-0.5;% convec flow (velocity taken at the point middle from imgae 1 and 2) |
---|
228 | ytable(ivec)=jref+vtable(ivec)/2-0.5;% and position of pixel 1=0.5 (convention for image coordinates=0 at the edge) |
---|
229 | iref=round(xtable(ivec)+0.5);% nearest image index for the middle of the vector |
---|
230 | jref=round(ytable(ivec)+0.5); |
---|
231 | % eliminate vectors located in the mask |
---|
232 | if checkmask && (iref<1 || jref<1 ||iref>npx_ima || jref>npy_ima ||( par_civ.Mask(jref,iref)<200 && par_civ.Mask(jref,iref)>=100)) |
---|
233 | utable(ivec)=0; |
---|
234 | vtable(ivec)=0; |
---|
235 | FF(ivec)=1; |
---|
236 | end |
---|
237 | ctable(ivec)=corrmax/sum_square;% correlation value |
---|
238 | catch ME |
---|
239 | FF(ivec)=1; |
---|
240 | disp(ME.message) |
---|
241 | end |
---|
242 | else |
---|
243 | FF(ivec)=1; |
---|
244 | end |
---|
245 | end |
---|
246 | end |
---|
247 | end |
---|
248 | end |
---|
249 | ytable=npy_ima-ytable+1;%reverse from j index to image coordinate y |
---|
250 | result_conv=result_conv/sum_square;% keep the last correlation matrix for output |
---|
251 | |
---|
252 | |
---|
253 | |
---|
254 | %------------------------------------------------------------------------ |
---|
255 | % --- Find the maximum of the correlation function with subpixel resolution |
---|
256 | % make a fit with a gaussian curve from the three correlation values across the max, along each direction. |
---|
257 | % OUPUT: |
---|
258 | % vector = optimum displacement vector with subpixel correction |
---|
259 | % FF =flag: =0 OK |
---|
260 | % =1 , max too close to the edge of the search box (1 pixel margin) |
---|
261 | % INPUT: |
---|
262 | % result_conv: 2D correlation fct |
---|
263 | % x,y: position of the maximum correlation at integer values |
---|
264 | |
---|
265 | function [vector,FF] = SUBPIXGAUSS (result_conv,x,y) |
---|
266 | %------------------------------------------------------------------------ |
---|
267 | % vector=[0 0]; %default |
---|
268 | FF=true;% error flag for vector truncated by the limited search box |
---|
269 | [npy,npx]=size(result_conv); |
---|
270 | |
---|
271 | peaky = y; peakx=x; |
---|
272 | if y < npy && y > 1 && x < npx-1 && x > 1 |
---|
273 | FF=false; % no error by the limited search box |
---|
274 | max_conv=result_conv(y,x);% max correlation |
---|
275 | %peak2noise= max(4,max_conv/std(reshape(result_conv,1,[])));% ratio of max conv to standard deviation of correlations (estiamtion of noise level), set to value 4 if it is too low |
---|
276 | peak2noise=100;% TODO: make this threshold more precise, depending on the image noise |
---|
277 | result_conv=result_conv*peak2noise/max_conv;% renormalise the correlation with respect to the noise |
---|
278 | result_conv(result_conv<1)=1; %set to 1 correlation values smaller than 1 (=0 by discretisation, to avoid divergence in the log) |
---|
279 | |
---|
280 | f0 = log(result_conv(y,x)); |
---|
281 | f1 = log(result_conv(y-1,x)); |
---|
282 | f2 = log(result_conv(y+1,x)); |
---|
283 | peaky = peaky+ (f1-f2)/(2*f1-4*f0+2*f2); |
---|
284 | f1 = log(result_conv(y,x-1)); |
---|
285 | f2 = log(result_conv(y,x+1)); |
---|
286 | peakx = peakx+ (f1-f2)/(2*f1-4*f0+2*f2); |
---|
287 | end |
---|
288 | |
---|
289 | vector=[peakx-floor(npx/2)-1 peaky-floor(npy/2)-1]; |
---|
290 | |
---|
291 | %------------------------------------------------------------------------ |
---|
292 | % --- Find the maximum of the correlation function after interpolation |
---|
293 | function [vector,FF] = SUBPIX2DGAUSS (result_conv,x,y) |
---|
294 | %------------------------------------------------------------------------ |
---|
295 | % vector=[0 0]; %default |
---|
296 | FF=true; |
---|
297 | peaky=y; |
---|
298 | peakx=x; |
---|
299 | [npy,npx]=size(result_conv); |
---|
300 | if (x < npx) && (y < npy) && (x > 1) && (y > 1) |
---|
301 | FF=false; |
---|
302 | max_conv=result_conv(y,x);% max correlation |
---|
303 | peak2noise= max(4,max_conv/std(reshape(result_conv,1,[])));% ratio of max conv to standard deviation of correlations (estiamtion of noise level), set to value 4 if it is too low |
---|
304 | result_conv=result_conv*peak2noise/max_conv;% renormalise the correlation with respect to the noise |
---|
305 | result_conv(result_conv<1)=1; %set to 1 correlation values smaller than 1 (=0 by discretisation, to avoid divergence in the log) |
---|
306 | for i=-1:1 |
---|
307 | for j=-1:1 |
---|
308 | %following 15 lines based on H. Nobach and M. Honkanen (2005) |
---|
309 | % Two-dimensional Gaussian regression for sub-pixel displacement |
---|
310 | % estimation in particle image velocimetry or particle position |
---|
311 | % estimation in particle tracking velocimetry |
---|
312 | % Experiments in Fluids (2005) 38: 511-515 |
---|
313 | c10(j+2,i+2)=i*log(result_conv(y+j, x+i)); |
---|
314 | c01(j+2,i+2)=j*log(result_conv(y+j, x+i)); |
---|
315 | c11(j+2,i+2)=i*j*log(result_conv(y+j, x+i)); |
---|
316 | c20(j+2,i+2)=(3*i^2-2)*log(result_conv(y+j, x+i)); |
---|
317 | c02(j+2,i+2)=(3*j^2-2)*log(result_conv(y+j, x+i)); |
---|
318 | end |
---|
319 | end |
---|
320 | c10=(1/6)*sum(sum(c10)); |
---|
321 | c01=(1/6)*sum(sum(c01)); |
---|
322 | c11=(1/4)*sum(sum(c11)); |
---|
323 | c20=(1/6)*sum(sum(c20)); |
---|
324 | c02=(1/6)*sum(sum(c02)); |
---|
325 | deltax=(c11*c01-2*c10*c02)/(4*c20*c02-c11*c11); |
---|
326 | deltay=(c11*c10-2*c01*c20)/(4*c20*c02-c11*c11); |
---|
327 | if abs(deltax)<1 |
---|
328 | peakx=x+deltax; |
---|
329 | end |
---|
330 | if abs(deltay)<1 |
---|
331 | peaky=y+deltay; |
---|
332 | end |
---|
333 | end |
---|
334 | vector=[peakx-floor(npx/2)-1 peaky-floor(npy/2)-1]; |
---|
335 | |
---|
336 | %------------------------------------------------------------------------ |
---|
337 | % --- Find the maximum of the correlation function after quadratic interpolation |
---|
338 | function [vector,F] = quadr_fit(result_conv,x,y) |
---|
339 | [npy,npx]=size(result_conv); |
---|
340 | if x<4 || y<4 || npx-x<4 ||npy-y <4 |
---|
341 | F=1; |
---|
342 | vector=[x y]; |
---|
343 | else |
---|
344 | F=0; |
---|
345 | x_ind=x-4:x+4; |
---|
346 | y_ind=y-4:y+4; |
---|
347 | x_vec=0.25*(x_ind-x); |
---|
348 | y_vec=0.25*(y_ind-y); |
---|
349 | [X,Y]=meshgrid(x_vec,y_vec); |
---|
350 | coord=[reshape(X,[],1) reshape(Y,[],1)]; |
---|
351 | result_conv=reshape(result_conv(y_ind,x_ind),[],1); |
---|
352 | |
---|
353 | |
---|
354 | % n=numel(X); |
---|
355 | % x=[X Y]; |
---|
356 | % X=X-0.5; |
---|
357 | % Y=Y+0.5; |
---|
358 | % y = (X.*X+2*Y.*Y+X.*Y+6) + 0.1*rand(n,1); |
---|
359 | p = polyfitn(coord,result_conv,2); |
---|
360 | A(1,1)=2*p.Coefficients(1); |
---|
361 | A(1,2)=p.Coefficients(2); |
---|
362 | A(2,1)=p.Coefficients(2); |
---|
363 | A(2,2)=2*p.Coefficients(4); |
---|
364 | vector=[x y]'-A\[p.Coefficients(3) p.Coefficients(5)]'; |
---|
365 | vector=vector'-[floor(npx/2) floor(npy/2)]-1 ; |
---|
366 | % zg = polyvaln(p,coord); |
---|
367 | % figure |
---|
368 | % surf(x_vec,y_vec,reshape(zg,9,9)) |
---|
369 | % hold on |
---|
370 | % plot3(X,Y,reshape(result_conv,9,9),'o') |
---|
371 | % hold off |
---|
372 | end |
---|
373 | |
---|
374 | |
---|