%-------------------------------------------------------------------------- % 'civ': function adapted from PIVlab http://pivlab.blogspot.com/ % function [xtable ytable utable vtable typevector] = civ (image1,image2,ibx,iby step, subpixfinder, mask, roi) % % OUTPUT: % xtable: set of x coordinates % ytable: set of y coordinates % utable: set of u displacements (along x) % vtable: set of v displacements (along y) % ctable: max image correlation for each vector % typevector: set of flags, =1 for good, =0 for NaN vectors % %INPUT: % par_civ: structure of input parameters, with fields: % .ImageA: first image for correlation (matrix) % .ImageB: second image for correlation(matrix) % .CorrBoxSize: 1,2 vector giving the size of the correlation box in x and y % .SearchBoxSize: 1,2 vector giving the size of the search box in x and y % .SearchBoxShift: 1,2 vector or 2 column matrix (for civ2) giving the shift of the search box in x and y % .CorrSmooth: =1 or 2 determines the choice of the sub-pixel determination of the correlation max % .ImageWidth: nb of pixels of the image in x % .Dx, Dy: mesh for the PIV calculation % .Grid: grid giving the PIV calculation points (alternative to .Dx .Dy): centres of the correlation boxes in Image A % .Mask: name of a mask file or mask image matrix itself % .MinIma: thresholds for image luminosity % .MaxIma % .CheckDeformation=1 for subpixel interpolation and image deformation (linear transform) % .DUDX: matrix of deformation obtained from patch at each grid point % .DUDY % .DVDX: % .DVDY function [xtable,ytable,utable,vtable,ctable,FF,result_conv,errormsg] = civ (par_civ) %% check input images par_civ.ImageA=sum(double(par_civ.ImageA),3);%sum over rgb component for color images par_civ.ImageB=sum(double(par_civ.ImageB),3); [npy_ima,npx_ima]=size(par_civ.ImageA); if ~isequal(size(par_civ.ImageB),[npy_ima npx_ima]) errormsg='image pair with unequal size'; return end %% prepare measurement grid if not given as input if ~isfield(par_civ,'Grid')% grid points defining central positions of the sub-images in image A nbinterv_x=floor((npx_ima-1)/par_civ.Dx); gridlength_x=nbinterv_x*par_civ.Dx; minix=ceil((npx_ima-gridlength_x)/2); nbinterv_y=floor((npy_ima-1)/par_civ.Dy); gridlength_y=nbinterv_y*par_civ.Dy; miniy=ceil((npy_ima-gridlength_y)/2); [GridX,GridY]=meshgrid(minix:par_civ.Dx:npx_ima-1,miniy:par_civ.Dy:npy_ima-1); par_civ.Grid(:,1)=reshape(GridX,[],1); par_civ.Grid(:,2)=reshape(GridY,[],1);% increases with array index end nbvec=size(par_civ.Grid,1); %% prepare correlation and search boxes CorrBoxSizeX=par_civ.CorrBoxSize(:,1); CorrBoxSizeY=par_civ.CorrBoxSize(:,2); if size(par_civ.CorrBoxSize,1)==1 CorrBoxSizeX=par_civ.CorrBoxSize(1)*ones(nbvec,1); CorrBoxSizeY=par_civ.CorrBoxSize(2)*ones(nbvec,1); end shiftx=par_civ.SearchBoxShift(:,1);%use the input shift estimate, rounded to the next integer value shifty=-par_civ.SearchBoxShift(:,2);% sign minus because image j index increases when y decreases if numel(shiftx)==1% case of a unique shift for the whole field( civ1) shiftx=shiftx*ones(nbvec,1); shifty=shifty*ones(nbvec,1); end %% shift the grid by half the expected displacement to get the velocity closer to the initial grid par_civ.Grid(:,1)=par_civ.Grid(:,1)-shiftx/2; par_civ.Grid(:,2)=par_civ.Grid(:,2)+shifty/2; %% Array initialisation and default output if par_civ.CorrSmooth=0 (just the grid calculated, no civ computation) xtable=round(par_civ.Grid(:,1)+0.5)-0.5; ytable=round(npy_ima-par_civ.Grid(:,2)+0.5)-0.5;% y index corresponding to the position in image coordinates shiftx=round(shiftx); shifty=round(shifty); utable=shiftx;%zeros(nbvec,1); vtable=shifty;%zeros(nbvec,1); ctable=zeros(nbvec,1); FF=zeros(nbvec,1); result_conv=[]; errormsg=''; %% prepare mask if isfield(par_civ,'Mask') && ~isempty(par_civ.Mask) if strcmp(par_civ.Mask,'all') return % get the grid only, no civ calculation elseif ischar(par_civ.Mask) par_civ.Mask=imread(par_civ.Mask);% read the mask if not allready done end end check_MinIma=isfield(par_civ,'MinIma');% test for image luminosity threshold check_MaxIma=isfield(par_civ,'MaxIma') && ~isempty(par_civ.MaxIma); %% Apply mask % Convention for mask, IDEAS NOT IMPLEMENTED % mask >200 : velocity calculated % 200 >=mask>150;velocity not calculated, interpolation allowed (bad spots) % 150>=mask >100: velocity not calculated, nor interpolated % 100>=mask> 20: velocity not calculated, impermeable (no flux through mask boundaries) % 20>=mask: velocity=0 checkmask=0; MinA=min(min(par_civ.ImageA)); if isfield(par_civ,'Mask') && ~isempty(par_civ.Mask) checkmask=1; if ~isequal(size(par_civ.Mask),[npy_ima npx_ima]) errormsg='mask must be an image with the same size as the images'; return end check_undefined=(par_civ.Mask<200 & par_civ.Mask>=20 ); end %% compute image correlations: MAINLOOP on velocity vectors sum_square=1;% default mesh=1;% default CheckDeformation=isfield(par_civ,'CheckDeformation')&& par_civ.CheckDeformation==1; if CheckDeformation mesh=0.25;%mesh in pixels for subpixel image interpolation (x 4 in each direction) par_civ.CorrSmooth=2;% use SUBPIX2DGAUSS (take into account more points near the max) end if par_civ.CorrSmooth~=0 % par_civ.CorrSmooth=0 implies no civ computation (just input image and grid points given) for ivec=1:nbvec iref=round(par_civ.Grid(ivec,1)+0.5);% xindex on the image A for the middle of the correlation box jref=round(npy_ima-par_civ.Grid(ivec,2)+0.5);% j index for the middle of the correlation box in the image A FF(ivec)=0; ibx2=floor(CorrBoxSizeX(ivec)/2); iby2=floor(CorrBoxSizeY(ivec)/2); isx2=ibx2+ceil(par_civ.SearchRange(1)); isy2=iby2+ceil(par_civ.SearchRange(2)); subrange1_x=iref-ibx2:iref+ibx2;% x indices defining the first subimage subrange1_y=jref-iby2:jref+iby2;% y indices defining the first subimage subrange2_x=iref+shiftx(ivec)-isx2:iref+shiftx(ivec)+isx2;%x indices defining the second subimage subrange2_y=jref+shifty(ivec)-isy2:jref+shifty(ivec)+isy2;%y indices defining the second subimage image1_crop=MinA*ones(numel(subrange1_y),numel(subrange1_x));% default value=min of image A image2_crop=MinA*ones(numel(subrange2_y),numel(subrange2_x));% default value=min of image A check1_x=subrange1_x>=1 & subrange1_x<=npx_ima;% check which points in the subimage 1 are contained in the initial image 1 check1_y=subrange1_y>=1 & subrange1_y<=npy_ima; check2_x=subrange2_x>=1 & subrange2_x<=npx_ima;% check which points in the subimage 2 are contained in the initial image 2 check2_y=subrange2_y>=1 & subrange2_y<=npy_ima; image1_crop(check1_y,check1_x)=par_civ.ImageA(subrange1_y(check1_y),subrange1_x(check1_x));%extract a subimage (correlation box) from image A image2_crop(check2_y,check2_x)=par_civ.ImageB(subrange2_y(check2_y),subrange2_x(check2_x));%extract a larger subimage (search box) from image B if checkmask mask1_crop=ones(numel(subrange1_y),numel(subrange1_x));% default value=1 for mask mask2_crop=ones(numel(subrange2_y),numel(subrange2_x));% default value=1 for mask mask1_crop(check1_y,check1_x)=check_undefined(subrange1_y(check1_y),subrange1_x(check1_x));%extract a mask subimage (correlation box) from image A mask2_crop(check2_y,check2_x)=check_undefined(subrange2_y(check2_y),subrange2_x(check2_x));%extract a mask subimage (search box) from image B sizemask=sum(sum(mask1_crop))/(numel(subrange1_y)*numel(subrange1_x));%size of the masked part relative to the correlation sub-image if sizemask > 1/2% eliminate point if more than half of the correlation box is masked FF(ivec)=1; % utable(ivec)=NaN; vtable(ivec)=NaN; else image1_crop=image1_crop.*~mask1_crop;% put to zero the masked pixels (mask1_crop='true'=1) image2_crop=image2_crop.*~mask2_crop; image1_mean=mean(mean(image1_crop))/(1-sizemask); image2_mean=mean(mean(image2_crop))/(1-sizemask); end else image1_mean=mean(mean(image1_crop)); image2_mean=mean(mean(image2_crop)); end %threshold on image minimum if FF(ivec)==0 if check_MinIma && (image1_mean < par_civ.MinIma || image2_mean < par_civ.MinIma) FF(ivec)=1; %threshold on image maximum elseif check_MaxIma && (image1_mean > par_civ.MaxIma || image2_mean > par_civ.MaxIma) FF(ivec)=1; end if FF(ivec)==1 utable(ivec)=NaN; vtable(ivec)=NaN; else %mask if checkmask image1_crop=(image1_crop-image1_mean).*~mask1_crop;%substract the mean, put to zero the masked parts image2_crop=(image2_crop-image2_mean).*~mask2_crop; else image1_crop=(image1_crop-image1_mean); image2_crop=(image2_crop-image2_mean); end %deformation if CheckDeformation xi=(1:mesh:size(image1_crop,2)); yi=(1:mesh:size(image1_crop,1))'; [XI,YI]=meshgrid(xi-ceil(size(image1_crop,2)/2),yi-ceil(size(image1_crop,1)/2)); XIant=XI-par_civ.DUDX(ivec)*XI+par_civ.DUDY(ivec)*YI+ceil(size(image1_crop,2)/2); YIant=YI+par_civ.DVDX(ivec)*XI-par_civ.DVDY(ivec)*YI+ceil(size(image1_crop,1)/2); image1_crop=interp2(image1_crop,XIant,YIant); image1_crop(isnan(image1_crop))=0; xi=(1:mesh:size(image2_crop,2)); yi=(1:mesh:size(image2_crop,1))'; image2_crop=interp2(image2_crop,xi,yi,'*spline'); image2_crop(isnan(image2_crop))=0; end sum_square=sum(sum(image1_crop.*image1_crop)); %reference: Oliver Pust, PIV: Direct Cross-Correlation %%%%%% correlation calculation result_conv= conv2(image2_crop,flip(flip(image1_crop,2),1),'valid'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% corrmax= max(max(result_conv)); %result_conv=(result_conv/corrmax); %normalize, peak=always 255 %Find the correlation max, at 255 [y,x] = find(result_conv==corrmax,1); subimage2_crop=image2_crop(y:y+2*iby2/mesh,x:x+2*ibx2/mesh);%subimage of image 2 corresponding to the optimum displacement of first image sum_square=sum_square*sum(sum(subimage2_crop.*subimage2_crop));% product of variances of image 1 and 2 sum_square=sqrt(sum_square);% srt of the variance product to normalise correlation if ~isempty(y) && ~isempty(x) try if par_civ.CorrSmooth==1 [vector,FF(ivec)] = SUBPIXGAUSS (result_conv,x,y); elseif par_civ.CorrSmooth==2 [vector,FF(ivec)] = SUBPIX2DGAUSS (result_conv,x,y); else [vector,FF(ivec)] = quadr_fit(result_conv,x,y); end utable(ivec)=vector(1)*mesh+shiftx(ivec); vtable(ivec)=-(vector(2)*mesh+shifty(ivec)); xtable(ivec)=iref+utable(ivec)/2-0.5;% convec flow (velocity taken at the point middle from imgae 1 and 2) ytable(ivec)=jref+vtable(ivec)/2-0.5;% and position of pixel 1=0.5 (convention for image coordinates=0 at the edge) iref=round(xtable(ivec)+0.5);% nearest image index for the middle of the vector jref=round(ytable(ivec)+0.5); % eliminate vectors located in the mask if checkmask && (iref<1 || jref<1 ||iref>npx_ima || jref>npy_ima ||( par_civ.Mask(jref,iref)<200 && par_civ.Mask(jref,iref)>=100)) utable(ivec)=0; vtable(ivec)=0; FF(ivec)=1; end ctable(ivec)=corrmax/sum_square;% correlation value catch ME FF(ivec)=1; disp(ME.message) end else FF(ivec)=1; end end end end end ytable=npy_ima-ytable+1;%reverse from j index to image coordinate y result_conv=result_conv/sum_square;% keep the last correlation matrix for output %------------------------------------------------------------------------ % --- Find the maximum of the correlation function with subpixel resolution % make a fit with a gaussian curve from the three correlation values across the max, along each direction. % OUPUT: % vector = optimum displacement vector with subpixel correction % FF =flag: =0 OK % =1 , max too close to the edge of the search box (1 pixel margin) % INPUT: % result_conv: 2D correlation fct % x,y: position of the maximum correlation at integer values function [vector,FF] = SUBPIXGAUSS (result_conv,x,y) %------------------------------------------------------------------------ % vector=[0 0]; %default FF=true;% error flag for vector truncated by the limited search box [npy,npx]=size(result_conv); peaky = y; peakx=x; if y < npy && y > 1 && x < npx-1 && x > 1 FF=false; % no error by the limited search box max_conv=result_conv(y,x);% max correlation %peak2noise= max(4,max_conv/std(reshape(result_conv,1,[])));% ratio of max conv to standard deviation of correlations (estiamtion of noise level), set to value 4 if it is too low peak2noise=100;% TODO: make this threshold more precise, depending on the image noise result_conv=result_conv*peak2noise/max_conv;% renormalise the correlation with respect to the noise result_conv(result_conv<1)=1; %set to 1 correlation values smaller than 1 (=0 by discretisation, to avoid divergence in the log) f0 = log(result_conv(y,x)); f1 = log(result_conv(y-1,x)); f2 = log(result_conv(y+1,x)); peaky = peaky+ (f1-f2)/(2*f1-4*f0+2*f2); f1 = log(result_conv(y,x-1)); f2 = log(result_conv(y,x+1)); peakx = peakx+ (f1-f2)/(2*f1-4*f0+2*f2); end vector=[peakx-floor(npx/2)-1 peaky-floor(npy/2)-1]; %------------------------------------------------------------------------ % --- Find the maximum of the correlation function after interpolation function [vector,FF] = SUBPIX2DGAUSS (result_conv,x,y) %------------------------------------------------------------------------ % vector=[0 0]; %default FF=true; peaky=y; peakx=x; [npy,npx]=size(result_conv); if (x < npx) && (y < npy) && (x > 1) && (y > 1) FF=false; max_conv=result_conv(y,x);% max correlation peak2noise= max(4,max_conv/std(reshape(result_conv,1,[])));% ratio of max conv to standard deviation of correlations (estiamtion of noise level), set to value 4 if it is too low result_conv=result_conv*peak2noise/max_conv;% renormalise the correlation with respect to the noise result_conv(result_conv<1)=1; %set to 1 correlation values smaller than 1 (=0 by discretisation, to avoid divergence in the log) for i=-1:1 for j=-1:1 %following 15 lines based on H. Nobach and M. Honkanen (2005) % Two-dimensional Gaussian regression for sub-pixel displacement % estimation in particle image velocimetry or particle position % estimation in particle tracking velocimetry % Experiments in Fluids (2005) 38: 511-515 c10(j+2,i+2)=i*log(result_conv(y+j, x+i)); c01(j+2,i+2)=j*log(result_conv(y+j, x+i)); c11(j+2,i+2)=i*j*log(result_conv(y+j, x+i)); c20(j+2,i+2)=(3*i^2-2)*log(result_conv(y+j, x+i)); c02(j+2,i+2)=(3*j^2-2)*log(result_conv(y+j, x+i)); end end c10=(1/6)*sum(sum(c10)); c01=(1/6)*sum(sum(c01)); c11=(1/4)*sum(sum(c11)); c20=(1/6)*sum(sum(c20)); c02=(1/6)*sum(sum(c02)); deltax=(c11*c01-2*c10*c02)/(4*c20*c02-c11*c11); deltay=(c11*c10-2*c01*c20)/(4*c20*c02-c11*c11); if abs(deltax)<1 peakx=x+deltax; end if abs(deltay)<1 peaky=y+deltay; end end vector=[peakx-floor(npx/2)-1 peaky-floor(npy/2)-1]; %------------------------------------------------------------------------ % --- Find the maximum of the correlation function after quadratic interpolation function [vector,F] = quadr_fit(result_conv,x,y) [npy,npx]=size(result_conv); if x<4 || y<4 || npx-x<4 ||npy-y <4 F=1; vector=[x y]; else F=0; x_ind=x-4:x+4; y_ind=y-4:y+4; x_vec=0.25*(x_ind-x); y_vec=0.25*(y_ind-y); [X,Y]=meshgrid(x_vec,y_vec); coord=[reshape(X,[],1) reshape(Y,[],1)]; result_conv=reshape(result_conv(y_ind,x_ind),[],1); % n=numel(X); % x=[X Y]; % X=X-0.5; % Y=Y+0.5; % y = (X.*X+2*Y.*Y+X.*Y+6) + 0.1*rand(n,1); p = polyfitn(coord,result_conv,2); A(1,1)=2*p.Coefficients(1); A(1,2)=p.Coefficients(2); A(2,1)=p.Coefficients(2); A(2,2)=2*p.Coefficients(4); vector=[x y]'-A\[p.Coefficients(3) p.Coefficients(5)]'; vector=vector'-[floor(npx/2) floor(npy/2)]-1 ; % zg = polyvaln(p,coord); % figure % surf(x_vec,y_vec,reshape(zg,9,9)) % hold on % plot3(X,Y,reshape(result_conv,9,9),'o') % hold off end