1 | % To develop.... |
---|
2 | function [Data,errormsg]= civ_uvmat(Param,ncfile) |
---|
3 | Data.ListGlobalAttribute={'Conventions','Program','CivStage'}; |
---|
4 | Data.Conventions='uvmat/civdata';% states the conventions used for the description of field variables and attributes |
---|
5 | Data.Program='civ_uvmat'; |
---|
6 | Data.CivStage=0;%default |
---|
7 | |
---|
8 | %% Civ1 |
---|
9 | if isfield (Param,'Civ1') |
---|
10 | par_civ1=Param.Civ1; |
---|
11 | str2num(par_civ1.rho) |
---|
12 | image1=imread(par_civ1.filename_ima_a); |
---|
13 | image2=imread(par_civ1.filename_ima_b); |
---|
14 | stepx=str2num(par_civ1.dx); |
---|
15 | stepy=str2num(par_civ1.dy); |
---|
16 | ibx2=ceil(str2num(par_civ1.ibx)/2); |
---|
17 | iby2=ceil(str2num(par_civ1.iby)/2); |
---|
18 | isx2=ceil(str2num(par_civ1.isx)/2); |
---|
19 | isy2=ceil(str2num(par_civ1.isy)/2); |
---|
20 | shiftx=str2num(par_civ1.shiftx); |
---|
21 | shifty=str2num(par_civ1.shifty); |
---|
22 | miniy=max(1+isy2-shifty,1+iby2); |
---|
23 | minix=max(1+isx2-shiftx,1+ibx2); |
---|
24 | maxiy=min(size(image1,1)-isy2-shifty,size(image1,1)-iby2); |
---|
25 | maxix=min(size(image1,2)-isx2-shiftx,size(image1,2)-ibx2); |
---|
26 | [GridX,GridY]=meshgrid(minix:stepx:maxix,miniy:stepy:maxiy); |
---|
27 | PointCoord(:,1)=reshape(GridX,[],1); |
---|
28 | PointCoord(:,2)=reshape(GridY,[],1); |
---|
29 | |
---|
30 | % caluclate velocity data (y and v in indices, reverse to y component) |
---|
31 | [xtable ytable utable vtable ctable F] = pivlab (image1,image2,ibx2,iby2,isx2,isy2,shiftx,shifty,PointCoord,str2num(par_civ1.rho), []); |
---|
32 | list_param=(fieldnames(par_civ1))'; |
---|
33 | list_remove={'pxcmx','pxcmy','npx','npy','gridflag','maskflag','term_a','term_b','T0'}; |
---|
34 | index=zeros(size(list_param)); |
---|
35 | for ilist=1:length(list_remove) |
---|
36 | index=strcmp(list_remove{ilist},list_param); |
---|
37 | if ~isempty(find(index,1)) |
---|
38 | list_param(index)=[]; |
---|
39 | end |
---|
40 | end |
---|
41 | for ilist=1:length(list_param) |
---|
42 | Civ1_param{ilist}=['Civ1_' list_param{ilist}]; |
---|
43 | eval(['Data.Civ1_' list_param{ilist} '=Param.Civ1.' list_param{ilist} ';']) |
---|
44 | end |
---|
45 | if isfield(Data,'Civ1_gridname') && strcmp(Data.Civ1_gridname(1:6),'noFile') |
---|
46 | Data.Civ1_gridname=''; |
---|
47 | end |
---|
48 | if isfield(Data,'Civ1_maskname') && strcmp(Data.Civ1_maskname(1:6),'noFile') |
---|
49 | Data.Civ1_maskname=''; |
---|
50 | end |
---|
51 | Data.ListGlobalAttribute=[Data.ListGlobalAttribute Civ1_param {'Civ1_Time','Civ1_Dt'}]; |
---|
52 | Data.Civ1_Time=str2double(par_civ1.T0); |
---|
53 | Data.Civ1_Dt=str2double(par_civ1.Dt); |
---|
54 | Data.ListVarName={'Civ1_X','Civ1_Y','Civ1_U','Civ1_V','Civ1_C','Civ1_F'};% cell array containing the names of the fields to record |
---|
55 | Data.VarDimName={'nbvec1','nbvec1','nbvec1','nbvec1','nbvec1','nbvec1'}; |
---|
56 | Data.VarAttribute{1}.Role='coord_x'; |
---|
57 | Data.VarAttribute{2}.Role='coord_y'; |
---|
58 | Data.VarAttribute{3}.Role='vector_x'; |
---|
59 | Data.VarAttribute{4}.Role='vector_y'; |
---|
60 | Data.VarAttribute{5}.Role='warnflag'; |
---|
61 | Data.Civ1_X=reshape(xtable,[],1); |
---|
62 | Data.Civ1_Y=reshape(size(image1,1)-ytable+1,[],1); |
---|
63 | Data.Civ1_U=reshape(utable,[],1); |
---|
64 | Data.Civ1_V=reshape(-vtable,[],1); |
---|
65 | Data.Civ1_C=reshape(ctable,[],1); |
---|
66 | Data.Civ1_F=reshape(F,[],1); |
---|
67 | Data.CivStage=1; |
---|
68 | else |
---|
69 | Data=nc2struct(ncfile)%read existing netcdf file |
---|
70 | if isfield(Data,'absolut_time_T0')%read civx file |
---|
71 | var={'Civ1_X','Civ1_Y','Civ1_U','Civ1_V','Civ1_C','Civ1_F','Civ1_FF';'vec_X','vec_Y','vec_U','vec_V','vec_C','vec_F','vec_FixFlag'}; |
---|
72 | %var=varcivx_generator('velocity','Civ1');%determine the names of constants and variables to read |
---|
73 | [Data,vardetect,ichoice]=nc2struct(ncfile,var);%read the variables in the netcdf file |
---|
74 | Data.ListGlobalAttribute=[{'Conventions','Program','CivStage'} Data.ListGlobalAttribute {'Civ1_Time','Civ1_Dt'}]; |
---|
75 | Data.Conventions='uvmat/civdata';% states the conventions used for the description of field variables and attributes |
---|
76 | Data.Program='civ_uvmat'; |
---|
77 | Data.Civ1_Time=double(Data.absolut_time_T0); |
---|
78 | Data.Civ1_Dt=double(Data.dt); |
---|
79 | Data.VarDimName={'nbvec1','nbvec1','nbvec1','nbvec1','nbvec1','nbvec1','nbvec1'}; |
---|
80 | Data.VarAttribute{1}.Role='coord_x'; |
---|
81 | Data.VarAttribute{2}.Role='coord_y'; |
---|
82 | Data.VarAttribute{3}.Role='vector_x'; |
---|
83 | Data.VarAttribute{4}.Role='vector_y'; |
---|
84 | Data.VarAttribute{5}.Role='ancillary'; |
---|
85 | Data.VarAttribute{6}.Role='warnflag'; |
---|
86 | Data.VarAttribute{7}.Role='errorflag'; |
---|
87 | Data.CivStage=1; |
---|
88 | end |
---|
89 | end |
---|
90 | |
---|
91 | %% Fix1 |
---|
92 | if isfield (Param,'Fix1') |
---|
93 | ListFixParam=fieldnames(Param.Fix1); |
---|
94 | for ilist=1:length(ListFixParam) |
---|
95 | ParamName=ListFixParam{ilist}; |
---|
96 | ListName=['Fix1_' ParamName]; |
---|
97 | ['Data.ListGlobalAttribute=[Data.ListGlobalAttribute ''' ParamName '''];'] |
---|
98 | eval(['Data.ListGlobalAttribute=[Data.ListGlobalAttribute ''' ParamName '''];']) |
---|
99 | eval(['Data.' ListName '=Param.Fix1.' ParamName ';']) |
---|
100 | end |
---|
101 | % Data.ListGlobalAttribute=[Data.ListGlobalAttribute {'Fix1_WarnFlags','Fix1_TreshCorr','Fix1_TreshVel','Fix1_UpperBoundTest'}]; |
---|
102 | % Data.Fix1_WarnFlags=Param.Fix1.WarnFlags; |
---|
103 | % Data.Fix1_ThreshCorr=Param.Fix1.ThreshCorr; |
---|
104 | % Data.Fix1_ThreshVel=Param.Fix1.ThreshVel; |
---|
105 | % Data.Fix1_UpperBoundTest=Param.Fix1.UpperBoundTest; |
---|
106 | Data.ListVarName=[Data.ListVarName {'Civ1_FF'}]; |
---|
107 | Data.VarDimName=[Data.VarDimName {'nbvec1'}]; |
---|
108 | nbvar=length(Data.ListVarName); |
---|
109 | Data.VarAttribute{nbvar}.Role='errorflag'; |
---|
110 | [Data.Civ1_FF]=fix_uvmat(Param.Fix1,Data.Civ1_F,Data.Civ1_C,Data.Civ1_U,Data.Civ1_V); |
---|
111 | Data.CivStage=2; |
---|
112 | end |
---|
113 | %% Patch1 |
---|
114 | if isfield (Param,'Patch1') |
---|
115 | Data.ListGlobalAttribute=[Data.ListGlobalAttribute {'Patch1_Rho','Patch1_Threshold','Patch1_SubDomain'}]; |
---|
116 | Data.Patch1_Rho=str2double(Param.Patch1.Rho); |
---|
117 | Data.Patch1_Threshold=str2double(Param.Patch1.Threshold); |
---|
118 | Data.Patch1_SubDomain=str2double(Param.Patch1.SubDomain); |
---|
119 | Data.ListVarName=[Data.ListVarName {'Patch1_U','Patch1_V'}]; |
---|
120 | Data.VarDimName=[Data.VarDimName {'nbvec1','nbvec1'}]; |
---|
121 | nbvar=length(Data.ListVarName); |
---|
122 | Data.VarAttribute{nbvar-1}.Role='vector_x'; |
---|
123 | Data.VarAttribute{nbvar}.Role='vector_y'; |
---|
124 | Data.Patch1_U=zeros(size(Data.Civ1_X)); |
---|
125 | Data.Patch1_V=zeros(size(Data.Civ1_X)); |
---|
126 | if isfield(Data,'Civ1_FF') |
---|
127 | ind_good=find(Data.Civ1_FF==0); |
---|
128 | else |
---|
129 | ind_good=1:numel(Data.Civ1_X); |
---|
130 | end |
---|
131 | Data.Civ1_X |
---|
132 | [Ures, Vres,FFres]=... |
---|
133 | patch_uvmat(Data.Civ1_X(ind_good)',Data.Civ1_Y(ind_good)',Data.Civ1_U(ind_good)',Data.Civ1_V(ind_good)',Data.Patch1_Rho,Data.Patch1_Threshold,Data.Patch1_SubDomain); |
---|
134 | size(Ures) |
---|
135 | size(Vres) |
---|
136 | size(FFres) |
---|
137 | size(ind_good) |
---|
138 | Data.Patch1_U(ind_good)=Ures; |
---|
139 | Data.Patch1_V(ind_good)=Vres; |
---|
140 | Data.Civ1_FF(ind_good)=FFres |
---|
141 | Data.CivStage=3; |
---|
142 | end |
---|
143 | %% write result |
---|
144 | errormsg=struct2nc(ncfile,Data); |
---|
145 | |
---|
146 | |
---|
147 | |
---|
148 | %'RUN_FIX': function for fixing velocity fields: |
---|
149 | %----------------------------------------------- |
---|
150 | % RUN_FIX(filename,field,flagindex,thresh_vecC,thresh_vel,iter,flag_mask,maskname,fileref,fieldref) |
---|
151 | % |
---|
152 | %filename: name of the netcdf file (used as input and output) |
---|
153 | %field: structure specifying the names of the fields to fix (depending on civ1 or civ2) |
---|
154 | %.vel_type='civ1' or 'civ2'; |
---|
155 | %.nb=name of the dimension common to the field to fix ('nb_vectors' for civ1); |
---|
156 | %.fixflag=name of fix flag variable ('vec_FixFlag' for civ1) |
---|
157 | %flagindex: flag specifying which values of vec_f are removed: |
---|
158 | % if flagindex(1)=1: vec_f=-2 vectors are removed |
---|
159 | % if flagindex(2)=1: vec_f=3 vectors are removed |
---|
160 | % if flagindex(3)=1: vec_f=2 vectors are removed (if iter=1) or vec_f=4 vectors are removed (if iter=2) |
---|
161 | %iter=1 for civ1 fields and iter=2 for civ2 fields |
---|
162 | %thresh_vecC: threshold in the image correlation vec_C |
---|
163 | %flag_mask: =1 mask used to remove vectors (0 else) |
---|
164 | %maskname: name of the mask image file for fix |
---|
165 | %thresh_vel: threshold on velocity, or on the difference with the reference file fileref if exists |
---|
166 | %inf_sup=1: remove values smaller than threshold thresh_vel, =2, larger than threshold |
---|
167 | %fileref: .nc file name for a reference velocity (='': refrence 0 used) |
---|
168 | %fieldref: 'civ1','filter1'...feld used in fileref |
---|
169 | |
---|
170 | function FF=fix_uvmat(Param,F,C,U,V) |
---|
171 | %error=[]; %default |
---|
172 | FF=zeros(size(F));%default |
---|
173 | |
---|
174 | %criterium on warn flags |
---|
175 | if isfield (Param,'WarnFlags') |
---|
176 | for iflag=1:numel(Param.WarnFlags) |
---|
177 | FF=(FF==1| F==Param.WarnFlags(iflag)); |
---|
178 | end |
---|
179 | end |
---|
180 | |
---|
181 | %criterium on correlation values |
---|
182 | if isfield (Param,'LowerBoundCorr') |
---|
183 | FF=FF==1 | C<Param.LowerBoundCorr; |
---|
184 | end |
---|
185 | |
---|
186 | if isfield (Param,'LowerBoundVel')&& ~isequal(Param.LowerBoundVel,0) |
---|
187 | thresh=Param.LowerBoundVel*Param.LowerBoundVel; |
---|
188 | FF=FF==1 | (U.*U+V.*V)<thresh; |
---|
189 | end |
---|
190 | if isfield (Param,'UpperBoundVel')&& ~isequal(Param.UpperBoundVel,0) |
---|
191 | thresh=Param.UpperBoundVel*Param.UpperBoundVel; |
---|
192 | FF=FF==1 | (U.*U+V.*V)>thresh; |
---|
193 | end |
---|
194 | |
---|
195 | % |
---|
196 | % % criterium on velocity values |
---|
197 | % delta_u=Field.U;%default without ref file |
---|
198 | % delta_v=Field.V; |
---|
199 | % if exist('fileref','var') && ~isempty(fileref) |
---|
200 | % if ~exist(fileref,'file') |
---|
201 | % error='reference file not found in RUN_FIX.m'; |
---|
202 | % display(error); |
---|
203 | % return |
---|
204 | % end |
---|
205 | % FieldRef=read_civxdata(fileref,[],fieldref); |
---|
206 | % if isfield(FieldRef,'FF') |
---|
207 | % index_true=find(FieldRef.FF==0); |
---|
208 | % FieldRef.X=FieldRef.X(index_true); |
---|
209 | % FieldRef.Y=FieldRef.Y(index_true); |
---|
210 | % FieldRef.U=FieldRef.U(index_true); |
---|
211 | % FieldRef.V=FieldRef.V(index_true); |
---|
212 | % end |
---|
213 | % if ~isfield(FieldRef,'X') || ~isfield(FieldRef,'Y') || ~isfield(FieldRef,'U') || ~isfield(FieldRef,'V') |
---|
214 | % error='reference file is not a velocity field in RUN_FIX.m '; %bad input file |
---|
215 | % return |
---|
216 | % end |
---|
217 | % if length(FieldRef.X)<=1 |
---|
218 | % errordlg('reference field with one vector or less in RUN_FIX.m') |
---|
219 | % return |
---|
220 | % end |
---|
221 | % vec_U_ref=griddata_uvmat(FieldRef.X,FieldRef.Y,FieldRef.U,Field.X,Field.Y); %interpolate vectors in the ref field |
---|
222 | % vec_V_ref=griddata_uvmat(FieldRef.X,FieldRef.Y,FieldRef.V,Field.X,Field.Y); %interpolate vectors in the ref field to the positions of the main field |
---|
223 | % delta_u=Field.U-vec_U_ref;%take the difference with the interpolated ref field |
---|
224 | % delta_v=Field.V-vec_V_ref; |
---|
225 | % end |
---|
226 | % thresh_vel_x=thresh_vel; |
---|
227 | % thresh_vel_y=thresh_vel; |
---|
228 | % if isequal(inf_sup,1) |
---|
229 | % flag5=abs(delta_u)<thresh_vel_x & abs(delta_v)<thresh_vel_y &(flag1~=1)&(flag2~=1)&(flag3~=1)&(flag4~=1); |
---|
230 | % elseif isequal(inf_sup,2) |
---|
231 | % flag5=(abs(delta_u)>thresh_vel_x | abs(delta_v)>thresh_vel_y) &(flag1~=1)&(flag2~=1)&(flag3~=1)&(flag4~=1); |
---|
232 | % end |
---|
233 | % |
---|
234 | % % flag7 introduce a grey mask, matrix M |
---|
235 | % if isequal (flag_mask,1) |
---|
236 | % M=imread(maskname); |
---|
237 | % nxy=size(M); |
---|
238 | % M=reshape(M,1,nxy(1)*nxy(2)); |
---|
239 | % rangx0=[0.5 nxy(2)-0.5]; |
---|
240 | % rangy0=[0.5 nxy(1)-0.5]; |
---|
241 | % vec_x1=Field.X-Field.U/2;%beginning points |
---|
242 | % vec_x2=Field.X+Field.U/2;%end points of vectors |
---|
243 | % vec_y1=Field.Y-Field.V/2;%beginning points |
---|
244 | % vec_y2=Field.Y+Field.V/2;%end points of vectors |
---|
245 | % indx=1+round((nxy(2)-1)*(vec_x1-rangx0(1))/(rangx0(2)-rangx0(1)));% image index x at abcissa vec_x |
---|
246 | % indy=1+round((nxy(1)-1)*(vec_y1-rangy0(1))/(rangy0(2)-rangy0(1)));% image index y at ordinate vec_y |
---|
247 | % test_in=~(indx < 1 |indy < 1 | indx > nxy(2) |indy > nxy(1)); %=0 out of the mask image, 1 inside |
---|
248 | % indx=indx.*test_in+(1-test_in); %replace indx by 1 out of the mask range |
---|
249 | % indy=indy.*test_in+(1-test_in); %replace indy by 1 out of the mask range |
---|
250 | % ICOMB=((indx-1)*nxy(1)+(nxy(1)+1-indy));%determine the indices in the image reshaped in a Matlab vector |
---|
251 | % Mvalues=M(ICOMB); |
---|
252 | % flag7b=((20 < Mvalues) & (Mvalues < 200))| ~test_in'; |
---|
253 | % indx=1+round((nxy(2)-1)*(vec_x2-rangx0(1))/(rangx0(2)-rangx0(1)));% image index x at abcissa Field.X |
---|
254 | % indy=1+round((nxy(1)-1)*(vec_y2-rangy0(1))/(rangy0(2)-rangy0(1)));% image index y at ordinate vec_y |
---|
255 | % test_in=~(indx < 1 |indy < 1 | indx > nxy(2) |indy > nxy(1)); %=0 out of the mask image, 1 inside |
---|
256 | % indx=indx.*test_in+(1-test_in); %replace indx by 1 out of the mask range |
---|
257 | % indy=indy.*test_in+(1-test_in); %replace indy by 1 out of the mask range |
---|
258 | % ICOMB=((indx-1)*nxy(1)+(nxy(1)+1-indy));%determine the indices in the image reshaped in a Matlab vector |
---|
259 | % Mvalues=M(ICOMB); |
---|
260 | % flag7e=((Mvalues > 20) & (Mvalues < 200))| ~test_in'; |
---|
261 | % flag7=(flag7b|flag7e)'; |
---|
262 | % else |
---|
263 | % flag7=0; |
---|
264 | % end |
---|
265 | % flagmagenta=flag1|flag2|flag3|flag4|flag5|flag7; |
---|
266 | % fixflag_unit=Field.FF-10*floor(Field.FF/10); %unity term of fix_flag |
---|
267 | |
---|
268 | |
---|
269 | |
---|
270 | %------------------------------------------------------------------------ |
---|
271 | % patch function |
---|
272 | function [U_patch,V_patch,FF,SubRangx,SubRangy,X_ctrs,Y_ctrs] =patch_uvmat(X,Y,U,V,Rho,Threshold,SubDomain) |
---|
273 | %subdomain decomposition |
---|
274 | warning off |
---|
275 | U=reshape(U,[],1); |
---|
276 | V=reshape(V,[],1); |
---|
277 | X=reshape(X,[],1); |
---|
278 | Y=reshape(Y,[],1); |
---|
279 | nbvec=numel(X); |
---|
280 | NbSubDomain=ceil(nbvec/SubDomain) |
---|
281 | MinX=min(X) |
---|
282 | MinY=min(Y) |
---|
283 | MaxX=max(X) |
---|
284 | MaxY=max(Y) |
---|
285 | RangX=MaxX-MinX; |
---|
286 | RangY=MaxY-MinY; |
---|
287 | AspectRatio=RangY/RangX |
---|
288 | NbSubDomainX=ceil(sqrt(NbSubDomain/AspectRatio)) |
---|
289 | NbSubDomainY=ceil(sqrt(NbSubDomain*AspectRatio)) |
---|
290 | |
---|
291 | SizX=RangX/NbSubDomainX;%width of subdomains |
---|
292 | SizY=RangY/NbSubDomainY;%height of subdomains |
---|
293 | CentreX=linspace(MinX+SizX/2,MaxX-SizX/2,NbSubDomainX); |
---|
294 | CentreY=linspace(MinY+SizY/2,MaxY-SizY/2,NbSubDomainY); |
---|
295 | SubIndexX=ceil((X-MinX)/SizX);%subdomain index of vectors |
---|
296 | SubIndexY=ceil((Y-MinY)/SizY); |
---|
297 | rho=RangX*RangY*Rho;%optimum rho increase as teh area of the subdomain |
---|
298 | U_tps=zeros(length(X),NbSubDomainY,NbSubDomainX);%default spline |
---|
299 | V_tps=zeros(length(X),NbSubDomainY,NbSubDomainX);%default spline |
---|
300 | X_dist=zeros(length(X),NbSubDomainY,NbSubDomainX);%default spline |
---|
301 | Y_dist=zeros(length(X),NbSubDomainY,NbSubDomainX);%default spline |
---|
302 | U_smooth=zeros(length(X),NbSubDomainY,NbSubDomainX); |
---|
303 | V_smooth=zeros(length(X),NbSubDomainY,NbSubDomainX); |
---|
304 | dist_ctre=zeros(length(X),NbSubDomainY,NbSubDomainX); |
---|
305 | FF=zeros(length(X),1); |
---|
306 | for isubx=1:NbSubDomainX |
---|
307 | for isuby=1:NbSubDomainY |
---|
308 | SubRangx(isuby,isubx,:)=[CentreX(isubx)-SizX/2 CentreX(isubx)+SizX/2]; |
---|
309 | SubRangy(isuby,isubx,:)=[CentreY(isubx)-SizY/2 CentreY(isubx)+SizY/2]; |
---|
310 | for iter=1:3 %increase the subdomain during three iterations at most |
---|
311 | ind_sel=find(X>SubRangx(isuby,isubx,1) & X<SubRangx(isuby,isubx,2) & Y>SubRangy(isuby,isubx,1) & Y<SubRangy(isuby,isubx,2)); |
---|
312 | size(ind_sel) |
---|
313 | if numel(ind_sel)<SubDomain/4;% too few selected vectors, increase the subrange for next iteration |
---|
314 | SubRangx(isuby,isubx,1)=SubRangx(isuby,isubx,1)-SizX/4; |
---|
315 | SubRangx(isuby,isubx,2)=SubRangx(isuby,isubx,2)+SizX/4; |
---|
316 | SubRangy(isuby,isubx,1)=SubRangy(isuby,isubx,1)-SizY/4; |
---|
317 | SubRangy(isuby,isubx,2)=SubRangy(isuby,isubx,2)+SizY/4; |
---|
318 | else |
---|
319 | [U_smooth_sub,U_tps_sub]=tps_uvmat(X(ind_sel),Y(ind_sel),U(ind_sel),rho); |
---|
320 | [V_smooth_sub,V_tps_sub]=tps_uvmat(X(ind_sel),Y(ind_sel),V(ind_sel),rho); |
---|
321 | size(U_smooth_sub) |
---|
322 | size(U(ind_sel)) |
---|
323 | UDiff=U_smooth_sub-U(ind_sel); |
---|
324 | VDiff=V_smooth_sub-V(ind_sel); |
---|
325 | NormDiff=UDiff.*UDiff+VDiff.*VDiff; |
---|
326 | FF(ind_sel)=20*(NormDiff>Threshold);%put FF value to 20 to identify the criterium of elimmination |
---|
327 | ind_ind_sel=find(FF(ind_sel)==0); |
---|
328 | if isequal(numel(ind_ind_sel),numel(ind_sel)) |
---|
329 | U_smooth(ind_sel,isuby,isubx)=U_smooth_sub; |
---|
330 | V_smooth(ind_sel,isuby,isubx)=V_smooth_sub; |
---|
331 | break |
---|
332 | elseif numel(ind_ind_sel)<SubDomain/4;% too few selected vectors, increase the subrange for next iteration |
---|
333 | SubRangx(isuby,isubx,1)=SubRangx(isuby,isubx,1)-SizX/4; |
---|
334 | SubRangx(isuby,isubx,2)=SubRangx(isuby,isubx,2)+SizX/4; |
---|
335 | SubRangy(isuby,isubx,1)=SubRangy(isuby,isubx,1)-SizY/4; |
---|
336 | SubRangy(isuby,isubx,2)=SubRangy(isuby,isubx,2)+SizY/4; |
---|
337 | else |
---|
338 | [U_smooth(ind_sel(ind_ind_sel),isuby,isubx),U_tps(ind_sel(ind_ind_sel),isuby,isubx),U_tps3(isuby,isubx)]=tps_uvmat(X(ind_sel(ind_ind_sel)),Y(ind_sel(ind_ind_sel)),U(ind_sel(ind_ind_sel)),rho); |
---|
339 | [V_smooth(ind_sel(ind_ind_sel),isuby,isubx),V_tps(ind_sel(ind_ind_sel),isuby,isubx),V_tps3(isuby,isubx)]=tps_uvmat(X(ind_sel(ind_ind_sel)),Y(ind_sel(ind_ind_sel)),V(ind_sel(ind_ind_sel)),rho); |
---|
340 | break |
---|
341 | end |
---|
342 | end |
---|
343 | end |
---|
344 | X_ctrs(isuby,isubx)=mean(X(ind_sel));%gravity centre of selected points |
---|
345 | Y_ctrs(isuby,isubx)=mean(Y(ind_sel));%positions of tps sources for the subdomain i, |
---|
346 | dist_ctre(ind_sel,isuby,isubx)=sqrt(abs(((X(ind_sel)-X_ctrs(isuby,isubx)).*(X(ind_sel)-X_ctrs(isuby,isubx)))+((Y(ind_sel)-Y_ctrs(isuby,isubx)).*(Y(ind_sel)-Y_ctrs(isuby,isubx))))); |
---|
347 | end |
---|
348 | end |
---|
349 | U_patch=sum(sum(U_smooth.*dist_ctre,3),2)./sum(sum(dist_ctre,3),2); |
---|
350 | V_patch=sum(sum(V_smooth.*dist_ctre,3),2)./sum(sum(dist_ctre,3),2); |
---|
351 | |
---|
352 | %------------------------------------------------------------------------ |
---|
353 | %fasshauer@iit.edu MATH 590 ? Chapter 19 32 |
---|
354 | % X,Y initial coordiantes |
---|
355 | % XI vector, YI column vector for the grid of interpolation points |
---|
356 | function [U_smooth,U_tps,U_tps3]=tps_uvmat(X,Y,U,rho) |
---|
357 | %------------------------------------------------------------------------ |
---|
358 | %rho smoothing parameter |
---|
359 | ep = 1; |
---|
360 | X=reshape(X,[],1); |
---|
361 | Y=reshape(Y,[],1); |
---|
362 | rhs = reshape(U,[],1); |
---|
363 | % if exist('FF','var') |
---|
364 | % test_false=isnan(rhs)|FF~=0; |
---|
365 | % else |
---|
366 | % test_false=isnan(rhs); |
---|
367 | % end |
---|
368 | % X(test_false)=[]; |
---|
369 | % Y(test_false)=[]; |
---|
370 | % rhs(test_false)=[]; |
---|
371 | %randn('state',3); rhs = rhs + 0.03*randn(size(rhs)); |
---|
372 | rhs = [rhs; zeros(3,1)]; |
---|
373 | dsites = [X Y];% coordinates of measurement sites |
---|
374 | ctrs = dsites;%radial base functions are located at the measurement sites |
---|
375 | DM_data = DistanceMatrix(dsites,ctrs);%2D matrix of distances between spline centres (=initial points) ctrs |
---|
376 | % if size(XI,1)==1 && size(YI,2)==1 % XI vector, YI column vector |
---|
377 | % [XI,YI]=meshgrid(XI,YI); |
---|
378 | % end |
---|
379 | % [npy,npx]=size(XI); |
---|
380 | % epoints = [reshape(XI,[],1) reshape(YI,[],1)]; |
---|
381 | IM_sites = tps(ep,DM_data);%values of thin plate at site points |
---|
382 | IM = IM_sites + rho*eye(size(IM_sites));% rho=1/(2*omega) , omega given by fasshauer; |
---|
383 | PM=[ones(size(dsites,1),1) dsites]; |
---|
384 | IM=[IM PM; [PM' zeros(3,3)]]; |
---|
385 | %fprintf('Condition number estimate: %e\n',condest(IM)) |
---|
386 | %DM_eval = DistanceMatrix(epoints,ctrs);%2D matrix of distances between extrapolation points epoints and spline centres (=site points) ctrs |
---|
387 | %EM = tps(ep,DM_eval);%values of thin plate |
---|
388 | %PM = [ones(size(epoints,1),1) epoints]; |
---|
389 | %EM = [EM PM]; |
---|
390 | U_tps=(IM\rhs); |
---|
391 | PM = [ones(size(dsites,1),1) dsites]; |
---|
392 | EM = [IM_sites PM]; |
---|
393 | U_smooth=EM *U_tps; |
---|
394 | U_tps3=U_tps(end-2:end); |
---|
395 | U_tps=U_tps(1:end-3); |
---|
396 | |
---|
397 | |
---|
398 | % U_patch = EM * spline_coeff; |
---|
399 | % U_patch=reshape(U_patch,npy,npx); |
---|
400 | % PM = [ones(size(dsites,1),1) dsites]; |
---|
401 | % EM = [IM_sites PM]; |
---|
402 | % U(test_false)=[]; |
---|
403 | % U_nodes=EM * spline_coeff; |
---|
404 | |
---|
405 | %exact = testfunctions(epoints); |
---|
406 | %maxerr = norm(Pf-exact,inf); |
---|
407 | % PlotSurf(xe,ye,Pf,neval,exact,maxerr,[160,20]); |
---|
408 | % PlotError2D(xe,ye,Pf,exact,maxerr,neval,[160,20]); |
---|
409 | |
---|
410 | |
---|
411 | |
---|
412 | % DM = DistanceMatrix(dsites,ctrs) |
---|
413 | % Forms the distance matrix of two sets of points in R^s, |
---|
414 | % i.e., DM(i,j) = || datasite_i - center_j ||_2. |
---|
415 | % Input |
---|
416 | % dsites: Mxs matrix representing a set of M data sites in R^s |
---|
417 | % (i.e., each row contains one s-dimensional point) |
---|
418 | % ctrs: Nxs matrix representing a set of N centers in R^s |
---|
419 | % (one center per row) |
---|
420 | % Output |
---|
421 | |
---|
422 | |
---|
423 | % DM: MxN matrix whose i,j position contains the Euclidean |
---|
424 | % distance between the i-th data site and j-th center |
---|
425 | function DM = DistanceMatrix(dsites,ctrs) |
---|
426 | [M,s] = size(dsites); [N,s] = size(ctrs); |
---|
427 | DM = zeros(M,N); |
---|
428 | % Accumulate sum of squares of coordinate differences |
---|
429 | % The ndgrid command produces two MxN matrices: |
---|
430 | % dr, consisting of N identical columns (each containing |
---|
431 | % the d-th coordinate of the M data sites) |
---|
432 | % cc, consisting of M identical rows (each containing |
---|
433 | % the d-th coordinate of the N centers) |
---|
434 | for d=1:s |
---|
435 | [dr,cc] = ndgrid(dsites(:,d),ctrs(:,d)); |
---|
436 | DM = DM + (dr-cc).^2; |
---|
437 | end |
---|
438 | DM = sqrt(DM); |
---|
439 | |
---|
440 | |
---|
441 | % rbf = tps(e,r) |
---|
442 | % Defines thin plate spline RBF |
---|
443 | function rbf = tps(e,r) |
---|
444 | rbf = zeros(size(r)); |
---|
445 | nz = find(r~=0); % to deal with singularity at origin |
---|
446 | rbf(nz) = (e*r(nz)).^2.*log(e*r(nz)); |
---|
447 | |
---|