%'phys': transforms image (px) to real world (phys) coordinates using geometric calibration parameters % OUTPUT: % DataOut: structure representing the modified field % DataOut_1: structure representing the second modified field %INPUT: % Data: structure of input data % with fields .A (image or scalar matrix), AX, AY % .X,.Y,.U,.V, .DjUi % .ZIndex: index of plane in multilevel case % Data.CoordType='phys' or 'px', The function ACTS ONLY IF .CoordType='px' % Calib: structure containing calibration parameters or a subtree Calib.GeometryCalib =calibration data (tsai parameters) function [DataOut,DataOut_1]=phys(varargin) % A FAIRE: 1- verifier si DataIn est une 'field structure'(.ListVarName'): % chercher ListVarAttribute, for each field (cell of variables): % .CoordType: 'phys' or 'px' (default==phys, no transform) % .scale_factor: =dt (to transform displacement into velocity) default=1 % .covariance: 'scalar', 'coord', 'D_i': covariant (like velocity), 'D^i': contravariant (like gradient), 'D^jD_i' (like strain tensor) % (default='coord' if .Role='coord_x,_y..., % 'D_i' if '.Role='vector_x,...', % 'scalar', else (thenno change except scale factor) Calib{1}=[]; if nargin==2||nargin==4 % nargin =nbre of input variables Data=varargin{1}; DataOut=Data;%default DataOut_1=[];%default CalibData=varargin{2}; if isfield(CalibData,'GeometryCalib') Calib{1}=CalibData.GeometryCalib; end Calib{2}=Calib{1}; else DataOut.Txt='wrong input: need two or four structures'; end test_1=0; if nargin==4 test_1=1; Data_1=varargin{3}; DataOut_1=Data_1;%default CalibData_1=varargin{4}; if isfield(CalibData_1,'GeometryCalib') Calib{2}=CalibData_1.GeometryCalib; end end iscalar=0; if ~isempty(Calib{1}) DataOut=phys_1(Data,Calib{1}); %case of images or scalar: in case of two input fields, we need to project the transform of on the same regular grid if isfield(Data,'A') && isfield(Data,'AX') && ~isempty(Data.AX) && isfield(Data,'AY')&&... ~isempty(Data.AY) && length(Data.A)>1 iscalar=1; A{1}=Data.A; end end %transform of X,Y coordinates for vector fields if isfield(Data,'ZIndex')&&~isempty(Data.ZIndex) ZIndex=Data.ZIndex; else ZIndex=0; end if test_1 DataOut_1=phys_1(Data_1,Calib{2}); if isfield(Data_1,'A')&&isfield(Data_1,'AX')&&~isempty(Data_1.AX) && isfield(Data_1,'AY')&&... ~isempty(Data_1.AY)&&length(Data_1.A)>1 iscalar=iscalar+1; Calib{iscalar}=Calib{2}; A{iscalar}=Data_1.A; if isfield(Data_1,'ZIndex') && ~isequal(Data_1.ZIndex,ZIndex) DataOut.Txt='inconsistent plane indexes in the two input fields'; end if iscalar==1% case for which only the second field is a scalar [A,AX,AY]=phys_Ima(A,Calib,ZIndex); DataOut_1.A=A{1}; DataOut_1.AX=AX; DataOut_1.AY=AY; return end end end if iscalar~=0 [A,AX,AY]=phys_Ima(A,Calib,ZIndex);%TODO : introduire interp2_uvmat ds phys_ima DataOut.A=A{1}; DataOut.AX=AX; DataOut.AY=AY; if iscalar==2 DataOut_1.A=A{2}; DataOut_1.AX=AX; DataOut_1.AY=AY; end end %------------------------------------------------ function DataOut=phys_1(Data,Calib) % for icell=1:length(Data) DataOut=Data;%default DataOut.CoordType='phys'; %put flag for physical coordinates % The transform ACTS ONLY IF .CoordType='px'and Calib defined if isfield(Data,'CoordType')&& isequal(Data.CoordType,'px')&& ~isempty(Calib) if isfield(Calib,'CoordUnit') DataOut.CoordUnit=Calib.CoordUnit; else DataOut.CoordUnit='cm'; %default % elseif isfield(DataOut,'CoordUnit') % DataOut=rmfield(DataOut,'CoordUnit'); end DataOut.TimeUnit='s'; %transform of X,Y coordinates for vector fields if isfield(Data,'ZIndex') && ~isempty(Data.ZIndex) Z=Data.ZIndex; else Z=0; end if isfield(Data,'X') &&isfield(Data,'Y')&&~isempty(Data.X) && ~isempty(Data.Y) [DataOut.X,DataOut.Y,DataOut.Z]=phys_XYZ(Calib,Data.X,Data.Y,Z); if isfield(Data,'U')&&isfield(Data,'V')&&~isempty(Data.U) && ~isempty(Data.V)&& isfield(Data,'dt') if ~isempty(Data.dt) [XOut_1,YOut_1]=phys_XYZ(Calib,Data.X-Data.U/2,Data.Y-Data.V/2,Z); [XOut_2,YOut_2]=phys_XYZ(Calib,Data.X+Data.U/2,Data.Y+Data.V/2,Z); DataOut.U=(XOut_2-XOut_1)/Data.dt; DataOut.V=(YOut_2-YOut_1)/Data.dt; end end end %transform of an image or scalar: done in phys_ima %transform of spatial derivatives if isfield(Data,'X') && ~isempty(Data.X) && isfield(Data,'DjUi') && ~isempty(Data.DjUi)... && isfield(Data,'dt') if ~isempty(Data.dt) % estimate the Jacobian matrix DXpx/DXphys for ip=1:length(Data.X) [Xp1,Yp1]=phys_XYZ(Calib,Data.X(ip)+0.5,Data.Y(ip),Z); [Xm1,Ym1]=phys_XYZ(Calib,Data.X(ip)-0.5,Data.Y(ip),Z); [Xp2,Yp2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)+0.5,Z); [Xm2,Ym2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)-0.5,Z); %Jacobian matrix DXpphys/DXpx DjXi(1,1)=(Xp1-Xm1); DjXi(2,1)=(Yp1-Ym1); DjXi(1,2)=(Xp2-Xm2); DjXi(2,2)=(Yp2-Ym2); DjUi(:,:)=Data.DjUi(ip,:,:); DjUi=(DjXi*DjUi')/DjXi;% =J-1*M*J , curvature effects (derivatives of J) neglected DataOut.DjUi(ip,:,:)=DjUi'; end DataOut.DjUi = DataOut.DjUi/Data.dt; % min(Data.DjUi(:,1,1))=DUDX end end end %%%%%%%%%%%%%%%%%%%% function [A_out,Rangx,Rangy]=phys_Ima(A,CalibIn,ZIndex) xcorner=[]; ycorner=[]; npx=[]; npy=[]; for icell=1:length(A) siz=size(A{icell}); npx=[npx siz(2)]; npy=[npy siz(1)]; Calib=CalibIn{icell}; xima=[0.5 siz(2)-0.5 0.5 siz(2)-0.5];%image coordiantes of corners yima=[0.5 0.5 siz(1)-0.5 siz(1)-0.5]; [xcorner_new,ycorner_new]=phys_XYZ(Calib,xima,yima,ZIndex);%corresponding physical coordinates xcorner=[xcorner xcorner_new]; ycorner=[ycorner ycorner_new]; end Rangx(1)=min(xcorner); Rangx(2)=max(xcorner); Rangy(2)=min(ycorner); Rangy(1)=max(ycorner); test_multi=(max(npx)~=min(npx)) | (max(npy)~=min(npy)); npx=max(npx); npy=max(npy); x=linspace(Rangx(1),Rangx(2),npx); y=linspace(Rangy(1),Rangy(2),npy); [X,Y]=meshgrid(x,y);%grid in physical coordiantes vec_B=[]; A_out={}; for icell=1:length(A) Calib=CalibIn{icell}; if (isfield(Calib,'R') && ~isequal(Calib.R(2,1),0) && ~isequal(Calib.R(1,2),0)) ||... ((isfield(Calib,'kappa1')&& ~isequal(Calib.kappa1,0))) || test_multi || ~isequal(Calib,CalibIn{1}) zphys=0; %default if isfield(Calib,'SliceCoord') %.Z= index of plane SliceCoord=Calib.SliceCoord(ZIndex,:); zphys=SliceCoord(3); %to generalize for non-parallel planes end [XIMA,YIMA]=px_XYZ(CalibIn{icell},X,Y,zphys);%corresponding image indices for each point in the real space grid XIMA=reshape(round(XIMA),1,npx*npy);%indices reorganized in 'line' YIMA=reshape(round(YIMA),1,npx*npy); flagin=XIMA>=1 & XIMA<=npx & YIMA >=1 & YIMA<=npy;%flagin=1 inside the original image testuint8=isa(A{icell},'uint8'); testuint16=isa(A{icell},'uint16'); if numel(siz)==2 %(B/W images) vec_A=reshape(A{icell},1,npx*npy);%put the original image in line ind_in=find(flagin); ind_out=find(~flagin); ICOMB=((XIMA-1)*npy+(npy+1-YIMA)); ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A vec_B(ind_in)=vec_A(ICOMB); vec_B(ind_out)=zeros(size(ind_out)); A_out{icell}=reshape(vec_B,npy,npx);%new image in real coordinates elseif numel(siz)==3 for icolor=1:siz(3) vec_A=reshape(A{icell}(:,:,icolor),1,npx*npy);%put the original image in line ind_in=find(flagin); ind_out=find(~flagin); ICOMB=((XIMA-1)*npy+(npy+1-YIMA)); ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A vec_B(ind_in)=vec_A(ICOMB); vec_B(ind_out)=zeros(size(ind_out)); A_out{icell}(:,:,icolor)=reshape(vec_B,npy,npx);%new image in real coordinates end end if testuint8 A_out{icell}=uint8(A_out{icell}); end if testuint16 A_out{icell}=uint16(A_out{icell}); end else% A_out{icell}=A{icell};%no transform Rangx=[0.5 npx-0.5];%image coordiantes of corners Rangy=[npy-0.5 0.5]; [Rangx]=phys_XYZ(Calib,Rangx,[0.5 0.5],[ZIndex ZIndex]);%case of translations without rotation and quadratic deformation [xx,Rangy]=phys_XYZ(Calib,[0.5 0.5],Rangy,[ZIndex ZIndex]); end end