[242] | 1 | %------------------------------------------------------------------------ |
---|
| 2 | %'phys_XYZ':transforms image (px) to real world (phys) coordinates using geometric calibration parameters |
---|
| 3 | % function [Xphys,Yphys]=phys_XYZ(Calib,X,Y,Z) |
---|
| 4 | % |
---|
| 5 | %OUTPUT: |
---|
| 6 | % |
---|
| 7 | %INPUT: |
---|
| 8 | %Z: index of plane |
---|
| 9 | function [Xphys,Yphys,Zphys]=phys_XYZ(Calib,X,Y,Zindex) |
---|
| 10 | %------------------------------------------------------------------------ |
---|
| 11 | testangle=0; |
---|
| 12 | test_refraction=0; |
---|
| 13 | if exist('Zindex','var')&& isequal(Zindex,round(Zindex))&& Zindex>0 && isfield(Calib,'SliceCoord')&&length(Calib.SliceCoord)>=Zindex |
---|
[745] | 14 | if isfield(Calib, 'SliceAngle') && ~isequal(Calib.SliceAngle,[0 0 0]) && ~isequal(Calib.SliceAngle(Zindex,:),[0 0 0]) |
---|
[242] | 15 | testangle=1; |
---|
| 16 | om=norm(Calib.SliceAngle(Zindex,:));%norm of rotation angle in radians |
---|
| 17 | OmAxis=Calib.SliceAngle(Zindex,:)/om; %unit vector marking the rotation axis |
---|
| 18 | cos_om=cos(pi*om/180); |
---|
| 19 | sin_om=sin(pi*om/180); |
---|
| 20 | coeff=OmAxis(3)*(1-cos_om); |
---|
| 21 | norm_plane(1)=OmAxis(1)*coeff+OmAxis(2)*sin_om; |
---|
| 22 | norm_plane(2)=OmAxis(2)*coeff-OmAxis(1)*sin_om; |
---|
| 23 | norm_plane(3)=OmAxis(3)*coeff+cos_om; |
---|
| 24 | Z0=norm_plane*Calib.SliceCoord(Zindex,:)'/norm_plane(3); |
---|
| 25 | else |
---|
| 26 | Z0=Calib.SliceCoord(Zindex,3);%horizontal plane z=cte |
---|
| 27 | end |
---|
| 28 | Z0virt=Z0; |
---|
| 29 | if isfield(Calib,'InterfaceCoord') && isfield(Calib,'RefractionIndex') |
---|
| 30 | H=Calib.InterfaceCoord(3); |
---|
| 31 | if H>Z0 |
---|
| 32 | Z0virt=H-(H-Z0)/Calib.RefractionIndex; %corrected z (virtual object) |
---|
| 33 | test_refraction=1; |
---|
| 34 | end |
---|
| 35 | end |
---|
| 36 | else |
---|
| 37 | Z0=0; |
---|
| 38 | Z0virt=0; |
---|
| 39 | end |
---|
| 40 | if ~exist('X','var')||~exist('Y','var') |
---|
| 41 | Xphys=[]; |
---|
| 42 | Yphys=[];%default |
---|
| 43 | return |
---|
| 44 | end |
---|
| 45 | %coordinate transform |
---|
| 46 | if ~isfield(Calib,'fx_fy') |
---|
| 47 | Calib.fx_fy=[1 1]; |
---|
| 48 | end |
---|
| 49 | if ~isfield(Calib,'Tx_Ty_Tz') |
---|
| 50 | Calib.Tx_Ty_Tz=[0 0 1]; |
---|
| 51 | end |
---|
| 52 | if ~isfield(Calib,'Cx_Cy') |
---|
| 53 | Calib.Cx_Cy=[0 0]; |
---|
| 54 | end |
---|
| 55 | if ~isfield(Calib,'kc') |
---|
| 56 | Calib.kc=0; |
---|
| 57 | end |
---|
| 58 | if isfield(Calib,'R') |
---|
| 59 | R=(Calib.R)'; |
---|
| 60 | if testangle |
---|
| 61 | a=-norm_plane(1)/norm_plane(3); |
---|
| 62 | b=-norm_plane(2)/norm_plane(3); |
---|
| 63 | if test_refraction |
---|
| 64 | a=a/Calib.RefractionIndex; |
---|
| 65 | b=b/Calib.RefractionIndex; |
---|
| 66 | end |
---|
| 67 | R(1)=R(1)+a*R(3); |
---|
| 68 | R(2)=R(2)+b*R(3); |
---|
| 69 | R(4)=R(4)+a*R(6); |
---|
| 70 | R(5)=R(5)+b*R(6); |
---|
| 71 | R(7)=R(7)+a*R(9); |
---|
| 72 | R(8)=R(8)+b*R(9); |
---|
| 73 | end |
---|
| 74 | Tx=Calib.Tx_Ty_Tz(1); |
---|
| 75 | Ty=Calib.Tx_Ty_Tz(2); |
---|
| 76 | Tz=Calib.Tx_Ty_Tz(3); |
---|
| 77 | f=Calib.fx_fy(1);%dpy=1; sx=1 |
---|
| 78 | %dpx=Calib.fx_fy(2)/Calib.fx_fy(1); |
---|
| 79 | Dx=R(5)*R(7)-R(4)*R(8); |
---|
| 80 | Dy=R(1)*R(8)-R(2)*R(7); |
---|
| 81 | D0=(R(2)*R(4)-R(1)*R(5)); |
---|
| 82 | Z11=R(6)*R(8)-R(5)*R(9); |
---|
| 83 | Z12=R(2)*R(9)-R(3)*R(8); |
---|
| 84 | Z21=R(4)*R(9)-R(6)*R(7); |
---|
| 85 | Z22=R(3)*R(7)-R(1)*R(9); |
---|
| 86 | Zx0=R(3)*R(5)-R(2)*R(6); |
---|
| 87 | Zy0=R(1)*R(6)-R(3)*R(4); |
---|
| 88 | A11=R(8)*Ty-R(5)*Tz+Z11*Z0virt; |
---|
| 89 | A12=R(2)*Tz-R(8)*Tx+Z12*Z0virt; |
---|
| 90 | A21=-R(7)*Ty+R(4)*Tz+Z21*Z0virt; |
---|
| 91 | A22=-R(1)*Tz+R(7)*Tx+Z22*Z0virt; |
---|
| 92 | % X0=Calib.fx_fy(1)*(R(5)*Tx-R(2)*Ty+Zx0*Z0virt); |
---|
| 93 | % Y0=Calib.fx_fy(2)*(-R(4)*Tx+R(1)*Ty+Zy0*Z0virt); |
---|
| 94 | X0=(R(5)*Tx-R(2)*Ty+Zx0*Z0virt); |
---|
| 95 | Y0=(-R(4)*Tx+R(1)*Ty+Zy0*Z0virt); |
---|
| 96 | %px to camera: |
---|
| 97 | % Xd=dpx*(X-Calib.Cx_Cy(1)); % sensor coordinates |
---|
| 98 | % Yd=(Y-Calib.Cx_Cy(2)); |
---|
| 99 | Xd=(X-Calib.Cx_Cy(1))/Calib.fx_fy(1); % sensor coordinates |
---|
| 100 | Yd=(Y-Calib.Cx_Cy(2))/Calib.fx_fy(2); |
---|
| 101 | dist_fact=1+Calib.kc*(Xd.*Xd+Yd.*Yd);%/(f*f); %distortion factor |
---|
| 102 | Xu=Xd./dist_fact;%undistorted sensor coordinates |
---|
| 103 | Yu=Yd./dist_fact; |
---|
| 104 | denom=Dx*Xu+Dy*Yu+D0; |
---|
| 105 | Xphys=(A11.*Xu+A12.*Yu+X0)./denom;%world coordinates |
---|
| 106 | Yphys=(A21.*Xu+A22.*Yu+Y0)./denom; |
---|
| 107 | if testangle |
---|
| 108 | Zphys=Z0+a*Xphys+b*Yphys; |
---|
| 109 | else |
---|
| 110 | Zphys=Z0; |
---|
| 111 | end |
---|
| 112 | else |
---|
| 113 | Xphys=-Calib.Tx_Ty_Tz(1)+X/Calib.fx_fy(1); |
---|
| 114 | Yphys=-Calib.Tx_Ty_Tz(2)+Y/Calib.fx_fy(2); |
---|
| 115 | end |
---|
| 116 | |
---|
| 117 | %'px_XYZ': transform phys coordinates to image coordinates (px) |
---|
| 118 | % |
---|
| 119 | % OUPUT: |
---|
| 120 | % X,Y: array of coordinates in the image cooresponding to the input physical positions |
---|
| 121 | % (origin at lower leftcorner, unit=pixel) |
---|
| 122 | |
---|
| 123 | % INPUT: |
---|
| 124 | % Calib: structure containing the calibration parameters (read from the ImaDoc .xml file) |
---|
| 125 | % Xphys, Yphys: array of x,y physical coordinates |
---|
| 126 | % [Z0]: corresponding array of z physical coordinates (0 by default) |
---|