1 | %------------------------------------------------------------------------ |
---|
2 | %'phys_XYZ':transforms image (px) to real world (phys) coordinates using geometric calibration parameters |
---|
3 | % function [Xphys,Yphys,Zphys]=phys_XYZ(Calib,X,Y,Zindex) |
---|
4 | % |
---|
5 | %OUTPUT: |
---|
6 | % Xphys,Yphys,Zphys: vector of phys coordinates corresponding to the input vector of image coordinates |
---|
7 | %INPUT: |
---|
8 | % Calib: Matlab structure containing the calibration parameters (pinhole camera model, see |
---|
9 | % http://servforge.legi.grenoble-inp.fr/projects/soft-uvmat/wiki/UvmatHelp#GeometryCalib) and the |
---|
10 | % parameters describing the illumination plane(s) |
---|
11 | % .Tx_Ty_Tz: translation (3 phys coordinates) defining the origine of the camera frame |
---|
12 | % .R : rotation matrix from phys to camera frame |
---|
13 | % .fx_fy: focal length along each direction of the image |
---|
14 | % X, Y: vectors of X and Y image coordinates |
---|
15 | % ZIndex: index defining the current illumination plane in a volume scan |
---|
16 | |
---|
17 | %======================================================================= |
---|
18 | % Copyright 2008-2022, LEGI UMR 5519 / CNRS UGA G-INP, Grenoble, France |
---|
19 | % http://www.legi.grenoble-inp.fr |
---|
20 | % Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr |
---|
21 | % |
---|
22 | % This file is part of the toolbox UVMAT. |
---|
23 | % |
---|
24 | % UVMAT is free software; you can redistribute it and/or modify |
---|
25 | % it under the terms of the GNU General Public License as published |
---|
26 | % by the Free Software Foundation; either version 2 of the license, |
---|
27 | % or (at your option) any later version. |
---|
28 | % |
---|
29 | % UVMAT is distributed in the hope that it will be useful, |
---|
30 | % but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
31 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
32 | % GNU General Public License (see LICENSE.txt) for more details. |
---|
33 | %======================================================================= |
---|
34 | |
---|
35 | function [Xphys,Yphys,Zphys]=phys_XYZ(Calib,Slice,X,Y,Zindex) |
---|
36 | %------------------------------------------------------------------------ |
---|
37 | testangle=0;% =1 if the illumination plane is tilted with respect to the horizontal plane Xphys Yphys |
---|
38 | test_refraction=0;% =1 if the considered points are viewed through an horizontal interface (located at z=Calib.InterfaceCoord(3)') |
---|
39 | Zphys=0; %default output |
---|
40 | if isempty(Slice) |
---|
41 | Slice=Calib;%old convention < 2022 |
---|
42 | end |
---|
43 | if exist('Zindex','var')&& isequal(Zindex,round(Zindex))&& Zindex>0 && isfield(Slice,'SliceCoord')&&size(Slice.SliceCoord,1)>=Zindex |
---|
44 | if isfield(Slice, 'SliceAngle') && size(Slice.SliceAngle,1)>=Zindex && ~isequal(Slice.SliceAngle(Zindex,:),[0 0 0]) |
---|
45 | testangle=1; |
---|
46 | norm_plane=angle2normal(Slice.SliceAngle(Zindex,:));% coordinates UVMAT-httpsof the unit vector normal to the current illumination plane |
---|
47 | end |
---|
48 | Z0=Slice.SliceCoord(Zindex,3);%horizontal plane z=cte |
---|
49 | Z0virt=Z0; |
---|
50 | if isfield(Slice,'InterfaceCoord') && isfield(Slice,'RefractionIndex') |
---|
51 | H=Slice.InterfaceCoord(3);% z position of the water surface |
---|
52 | if H>Z0 |
---|
53 | Z0virt=H-(H-Z0)/Slice.RefractionIndex; %corrected z (virtual object) |
---|
54 | test_refraction=1; |
---|
55 | end |
---|
56 | end |
---|
57 | else |
---|
58 | Z0=0; |
---|
59 | Z0virt=0; |
---|
60 | end |
---|
61 | if ~exist('X','var')||~exist('Y','var') |
---|
62 | Xphys=[]; |
---|
63 | Yphys=[];%default |
---|
64 | return |
---|
65 | end |
---|
66 | %coordinate transform |
---|
67 | if ~isfield(Calib,'fx_fy') |
---|
68 | Calib.fx_fy=[1 1]; |
---|
69 | end |
---|
70 | if ~isfield(Calib,'Tx_Ty_Tz') |
---|
71 | Calib.Tx_Ty_Tz=[0 0 1]; |
---|
72 | end |
---|
73 | if ~isfield(Calib,'Cx_Cy') |
---|
74 | Calib.Cx_Cy=[0 0]; |
---|
75 | end |
---|
76 | kc=[0 0]; |
---|
77 | if isfield(Calib,'kc') |
---|
78 | kc(1:numel(Calib.kc))=Calib.kc; |
---|
79 | end |
---|
80 | % if ~isfield(Calib,'kc2') |
---|
81 | % Calib.kc2=0; |
---|
82 | % end |
---|
83 | if isfield(Calib,'R') |
---|
84 | R=(Calib.R)'; |
---|
85 | c=Z0virt; |
---|
86 | cvirt=Z0virt; |
---|
87 | if testangle |
---|
88 | % equation of the illumination plane: z=ax+by+c |
---|
89 | a=-norm_plane(1)/norm_plane(3); |
---|
90 | b=-norm_plane(2)/norm_plane(3); |
---|
91 | if test_refraction |
---|
92 | avirt=a/Slice.RefractionIndex; |
---|
93 | bvirt=b/Slice.RefractionIndex; |
---|
94 | else |
---|
95 | avirt=a; |
---|
96 | bvirt=b; |
---|
97 | end |
---|
98 | cvirt=Z0virt-avirt*Slice.SliceCoord(Zindex,1)-bvirt*Slice.SliceCoord(Zindex,2);% Z0 = (virtual) z coordinate on the rotation axis (assumed horizontal) |
---|
99 | % c=z coordinate at (x,y)=(0,0) |
---|
100 | c=Z0-a*Slice.SliceCoord(Zindex,1)-b*Slice.SliceCoord(Zindex,2); |
---|
101 | R(1)=R(1)+avirt*R(3); |
---|
102 | R(2)=R(2)+bvirt*R(3); |
---|
103 | R(4)=R(4)+avirt*R(6); |
---|
104 | R(5)=R(5)+bvirt*R(6); |
---|
105 | R(7)=R(7)+avirt*R(9); |
---|
106 | R(8)=R(8)+bvirt*R(9); |
---|
107 | end |
---|
108 | Tx=Calib.Tx_Ty_Tz(1); |
---|
109 | Ty=Calib.Tx_Ty_Tz(2); |
---|
110 | Tz=Calib.Tx_Ty_Tz(3); |
---|
111 | Dx=R(5)*R(7)-R(4)*R(8); |
---|
112 | Dy=R(1)*R(8)-R(2)*R(7); |
---|
113 | D0=(R(2)*R(4)-R(1)*R(5)); |
---|
114 | Z11=R(6)*R(8)-R(5)*R(9); |
---|
115 | Z12=R(2)*R(9)-R(3)*R(8); |
---|
116 | Z21=R(4)*R(9)-R(6)*R(7); |
---|
117 | Z22=R(3)*R(7)-R(1)*R(9); |
---|
118 | Zx0=R(3)*R(5)-R(2)*R(6); |
---|
119 | Zy0=R(1)*R(6)-R(3)*R(4); |
---|
120 | B11=R(8)*Ty-R(5)*Tz+Z11*cvirt; |
---|
121 | B12=R(2)*Tz-R(8)*Tx+Z12*cvirt; |
---|
122 | B21=-R(7)*Ty+R(4)*Tz+Z21*cvirt; |
---|
123 | B22=-R(1)*Tz+R(7)*Tx+Z22*cvirt; |
---|
124 | X0=R(5)*Tx-R(2)*Ty+Zx0*cvirt; |
---|
125 | Y0=-R(4)*Tx+R(1)*Ty+Zy0*cvirt; |
---|
126 | %px to camera: |
---|
127 | Xd=(X-Calib.Cx_Cy(1))/Calib.fx_fy(1); % sensor coordinates |
---|
128 | Yd=(Y-Calib.Cx_Cy(2))/Calib.fx_fy(2); |
---|
129 | dist_fact=1+kc(1)*(Xd.*Xd+Yd.*Yd);% distortion factor, first approximation Xu,Yu=Xd,Yd |
---|
130 | test=0; |
---|
131 | niter=0; |
---|
132 | while test==0 && niter<10 |
---|
133 | dist_fact_old=dist_fact; |
---|
134 | Xu=Xd./dist_fact;%undistorted sensor coordinates, second iteration |
---|
135 | Yu=Yd./dist_fact; |
---|
136 | R2=Xu.*Xu+Yu.*Yu; |
---|
137 | dist_fact=1+kc(1)*R2+kc(2)*R2.*R2;% distortion factor,next approximation |
---|
138 | test=max(max(abs(dist_fact-dist_fact_old)))<0.00001; % reducing the relative error to 10^-5 forthe inversion of the quadraticcorrection |
---|
139 | niter=niter+1; |
---|
140 | end |
---|
141 | denom=Dx*Xu+Dy*Yu+D0; |
---|
142 | Xphys=(B11.*Xu+B12.*Yu+X0)./denom;%world coordinates |
---|
143 | Yphys=(B21.*Xu+B22.*Yu+Y0)./denom; |
---|
144 | if testangle |
---|
145 | Zphys=c+a*Xphys+b*Yphys; |
---|
146 | else |
---|
147 | Zphys=Z0; |
---|
148 | end |
---|
149 | else |
---|
150 | Xphys=-Calib.Tx_Ty_Tz(1)+X/Calib.fx_fy(1); |
---|
151 | Yphys=-Calib.Tx_Ty_Tz(2)+Y/Calib.fx_fy(2); |
---|
152 | end |
---|
153 | |
---|