%'plot_field': plot any field with the structure defined in the uvmat package %------------------------------------------------------------------------ % % This function is used by uvmat to plot fields. It automatically chooses the representation % appropriate to the input field structure: % 2D vector fields are represented by arrows, 2D scalar fiedlds by grey scale images or contour plots, 1D fields are represented by usual plot with (abscissa, ordinate). % The input field structure is first tested by check_field_structure.m, % then split into blocks of related variables by find_field_indices.m. % The dimensionality of each block is obtained by this fuction % considering the presence of variables with the attribute .Role='coord_x' % and/or coord_y and/or coord_z (case of unstructured coordinates), or % dimension variables (case of matrices). % % function [PlotType,PlotParamOut,haxes]= plot_field(Data,haxes,PlotParam,htext,PosColorbar) % % OUPUT: % PlotType: type of plot: 'text','line'(curve plot),'plane':2D view,'volume' % PlotParamOut: structure, representing the updated plotting parameters, in case of automatic scaling % haxes: handle of the plotting axis, when a new figure is created. % %INPUT % Data: structure describing the field to plot % (optional) .ListGlobalAttribute: cell listing the names of the global attributes % .Att_1,Att_2... : values of the global attributes % (requested) .ListVarName: list of variable names to select (cell array of char strings {'VarName1', 'VarName2',...} ) % (requested) .VarDimName: list of dimension names for each element of .ListVarName (cell array of string cells) % .VarAttribute: cell of attributes for each element of .ListVarName (cell array of structures of the form VarAtt.key=value) % (requested) .Var1, .Var2....: variables (Matlab arrays) with names listed in .ListVarName % % Variable attribute .Role : % The only variable attribute used for plotting purpose is .Role which can take % the values % Role = 'scalar': (default) represents a scalar field % = 'coord_x', 'coord_y', 'coord_z': represents a separate set of % unstructured coordinate x, y or z % = 'vector': represents a vector field whose number of components % is given by the last dimension (called 'nb_dim') % = 'vector_x', 'vector_y', 'vector_z' :represents the x, y or z component of a vector % = 'warnflag' : provides a warning flag about the quality of data in a 'Field', default=0, no warning % = 'errorflag': provides an error flag marking false data, % default=0, no error. Different non zero values can represent different criteria of elimination. % % % additional elements characterizing the projection object (should not be necessary)-- % Data.Style : style of projection object % Data.XObject,.YObject: set of coordinates defining the object position; % Data.ProjMode=type of projection ; % Data.ProjAngle=angle of projection; % Data.DX,.DY,.DZ=increments; % Data.MaxY,MinY: min and max Y % haxes: handle of the plotting axes to update with the new plot. If this input is absent or not a valid axes handle, a new figure is created. % % PlotParam: parameters for plotting, as read on the uvmat interface (by function 'read_plot_param.m') % .FixedLimits:=0 (default) adjust axes limit to the X,Y data, =1: preserves the previous axes limits % .Auto_xy: =0 (default): kepp 1 to 1 aspect ratio for x and y scales, =1: automatic adjustment of the graph % --scalars-- % .Scalar.MaxA: upper bound (saturation color) for the scalar representation, max(field) by default % .Scalar.MinA: lower bound (saturation) for the scalar representation, min(field) by default % .Scalar.AutoScal: =1 (default) lower and upper bounds of the scalar representation set to the min and max of the field % =0 lower and upper bound imposed by .AMax and .MinA % .Scalar.BW= 1 black and white representation imposed, =0 by default. % .Scalar.Contours= 1: represent scalars by contour plots (Matlab function 'contour'); =0 by default % .IncrA : contour interval % -- vectors-- % .Vectors.VecScale: scale for the vector representation % .Vectors.AutoVec: =0 (default) automatic length for vector representation, =1: length set by .VecScale % .Vectors.HideFalse= 0 (default) false vectors represented in magenta, =1: false vectors not represented; % .Vectors.HideWarning= 0 (default) vectors marked by warnflag~=0 marked in black, 1: no warning representation; % .Vectors.decimate4 = 0 (default) all vectors reprtesented, =1: half of the vectors represented along each coordinate % -- vector color-- % .Vectors.ColorCode= 'black','white': imposed color (default ='blue') % 'rgb', : three colors red, blue, green depending % on thresholds .colcode1 and .colcode2 on the input scalar value (C) % 'brg': like rgb but reversed color order (blue, green, red) % '64 colors': continuous color from blue to red (multijet) % .Vectors.colcode1 : first threshold for rgb, first value for'continuous' % .Vectors.colcode2 : second threshold for rgb, last value (saturation) for 'continuous' % .Vectors.FixedCbounds; =0 (default): the bounds on C representation are min and max, =1: they are fixed by .Minc and .MaxC % .Vectors.MinC = imposed minimum of the scalar field used for vector color; % .Vectors.MaxC = imposed maximum of the scalar field used for vector color; % % % PosColorbar: if not empty, display a colorbar for B&W images % imposed position of the colorbar (ex [0.821 0.471 0.019 0.445]) %AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA % Copyright Joel Sommeria, 2008, LEGI / CNRS-UJF-INPG, sommeria@coriolis-legi.org. %AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA % This file is part of the toolbox UVMAT. % % UVMAT is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % UVMAT is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License (file UVMAT/COPYING.txt) for more details. %AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA function [PlotType,PlotParamOut,haxes]= plot_field(Data,haxes,PlotParam,htext,PosColorbar) % TODO: % use htext: handles of the text edit box (uicontrol) % introduce PlotParam.Hold: 'on' or 'off' (for curves) %default output if ~exist('PlotParam','var'),PlotParam=[];end; if ~exist('htext','var'),htext=[];end; if ~exist('PosColorbar','var'),PosColorbar=[];end; PlotType='text'; %default PlotParamOut=PlotParam;%default % check input structure [Data,errormsg]=check_field_structure(Data); if ~isempty(errormsg) msgbox_uvmat('ERROR',['input of plot_field/check_field_structure: ' errormsg]) display(['input of plot_field/check_field_structure:: ' errormsg]) return end testnewfig=1;%test to create a new figure (default) testzoomaxes=0;%test for the existence of a zoom secondary figure attached to the plotting axes if exist('haxes','var') if ishandle(haxes) if isequal(get(haxes,'Type'),'axes') axes(haxes) testnewfig=0; AxeData=get(haxes,'UserData'); if isfield(AxeData,'ZoomAxes')&& ishandle(AxeData.ZoomAxes) if isequal(get(AxeData.ZoomAxes,'Type'),'axes') testzoomaxes=1; zoomaxes=AxeData.ZoomAxes; end end end end end if testnewfig% create a new figure and axes if the plotting axes does not exist hfig=figure; % if isfield(Data,'IndexObj') && isfield(Data,'Style') && isfield(Data,'ProjMode') % figname=[num2str(Data.IndexObj) '-' Data.Style]; % set(hfig,'Name',figname) % end % testhandle=0; if isfield(PlotParam,'text_display_1') && ishandle(PlotParam.text_display_1) set(hfig,'UserData',PlotParam) % testhandle=1; end set(hfig,'Units','normalized') set(hfig,'WindowButtonDownFcn','mouse_down') %set(hfig,'WindowButtonMotionFcn',{'mouse_motion',PlotParam})%set mouse action function set(hfig,'WindowButtonMotionFcn','mouse_motion')%set mouse action function set(hfig,'WindowButtonUpFcn','mouse_up')%set mouse action function haxes=axes; set(haxes,'position',[0.13,0.2,0.775,0.73]) else hstack=findobj(allchild(0),'Type','figure');%current stack order of figures in matlab end if isfield(PlotParam,'text_display_1') && ishandle(PlotParam.text_display_1) PlotParam=read_plot_param(PlotParam); end if testnewfig PlotParam.NextPlot='add'; %parameter for plot_profile and plot_hist end if isfield(PlotParam,'Auto_xy') && isequal(PlotParam.Auto_xy,1) set(haxes,'DataAspectRatioMode','auto')%automatic aspect ratio end % check the cells of fields : % testnbdim=1; [CellVarIndex,NbDim,VarType,errormsg]=find_field_indices(Data); if ~isempty(errormsg) msgbox_uvmat('ERROR',['input of plot_field/find_field_indices: ' errormsg]) display(['input of plot_field: ' errormsg]) return end if ~isfield(Data,'NbDim') %& ~isfield(Data,'Style')%determine the space dimensionb if not defined: choose the kind of plot [Data.NbDim]=max(NbDim); end if isequal(Data.NbDim,0) AxeData=plot_text(Data,htext); PlotType='text'; elseif isequal(Data.NbDim,1) [AxeData,haxes]=plot_profile(Data,CellVarIndex,VarType,haxes,PlotParam);% if testzoomaxes [AxeData,zoomaxes,PlotParamOut]=plot_profile(Data,CellVarIndex,VarType,zoomaxes,PlotParam); AxeData.ZoomAxes=zoomaxes; end PlotType='line'; elseif isequal(Data.NbDim,2) ind_select=find(NbDim>=2); if numel(ind_select)>2 msgbox_uvmat('ERROR','more than two fields to map') display('more than two fields to map') return end [AxeData,haxes,PlotParamOut,PlotType]=plot_plane(Data,CellVarIndex(ind_select),VarType(ind_select),haxes,PlotParam,htext,PosColorbar); if testzoomaxes [AxeData,zoomaxes,PlotParamOut]=plot_plane(Data,CellVarIndex(ind_select),VarType(ind_select),zoomaxes,PlotParam,1,PosColorbar); AxeData.ZoomAxes=zoomaxes; end elseif isequal(Data.NbDim,3) msgbox_uvmat('ERROR','volume plot not implemented yet') return % else % testnbdim=0; end %display (or delete) error message htext=findobj(haxes,'Tag','hTxt'); if isfield(Data,'Txt') if isempty(htext) Xlim=get(haxes,'XLim'); Ylim=get(haxes,'YLim'); htext=text(Xlim(1),(Ylim(1)+Ylim(2))/2,Data.Txt,'Tag','hTxt','Color','r'); set(htext,'Interpreter','none') else set(htext,'String',Data.Txt) end elseif ~isempty(htext) delete(htext) end % set graph aspect ratio %set(haxes,'UserData',AxeData) set(haxes,'UserData',Data) if ~testnewfig set(0,'Children',hstack);%put back the initial figure stack after plot creation %set(haxes,'Tag','uvmat'); end %------------------------------------------------------------------- function hdisplay=plot_text(FieldData,hdisplay_in) %------------------------------------------------------------------- hdisplay_in if exist('hdisplay_in','var') && ~isempty(hdisplay_in) && ishandle(hdisplay_in) && isequal(get(hdisplay_in,'Type'),'uicontrol') hdisplay=hdisplay_in; else figure;%create new figure hdisplay=uicontrol('Style','edit', 'Units','normalized','Position', [0 0 1 1],'Max',2,'FontName','monospaced'); end ff=fields(FieldData);%list of field names vv=struct2cell(FieldData);%list of field values for icell=1:length(vv) Tabcell{icell,1}=ff{icell}; ss=vv{icell}; sizss=size(ss); if isnumeric(ss) if sizss(1)<=1 && length(ss)<5 displ{icell}=num2str(ss); else displ{icell}=[class(ss) ', size ' num2str(size(ss))]; end elseif ischar(ss) displ{icell}=ss; elseif iscell(ss) sizcell=size(ss); if sizcell(1)==1 && length(sizcell)==2 %line cell ssline='{'''; for icolumn=1:sizcell(2) if isnumeric(ss{icolumn}) if size(ss{icolumn},1)<=1 && length(ss{icolumn})<5 sscolumn=num2str(ss{icolumn});%line vector else sscolumn=[class(ss{icolumn}) ', size ' num2str(size(ss{icolumn}))]; end elseif ischar(ss{icolumn}) sscolumn=ss{icolumn}; else sscolumn=class(ss{icolumn}); end if icolumn==1 ssline=[ssline sscolumn]; else ssline=[ssline ''',''' sscolumn]; end end displ{icell}=[ssline '''}']; else displ{icell}=[class(ss) ', size ' num2str(sizcell)]; end else displ{icell}=class(ss); end Tabcell{icell,2}=displ{icell}; end Tabchar=cell2tab(Tabcell,': '); set(hdisplay,'String', Tabchar) %------------------------------------------------------------------- function [AxeData,haxes]=plot_profile(data,CellVarIndex,VarType,haxes,PlotParam) %------------------------------------------------------------------- %axes(haxes) hfig=get(haxes,'parent'); AxeData=data; ColorOrder=[1 0 0;0 0.5 0;0 0 1;0 0.75 0.75;0.75 0 0.75;0.75 0.75 0;0.25 0.25 0.25]; set(haxes,'ColorOrder',ColorOrder) if isfield(PlotParam,'NextPlot') set(haxes,'NextPlot',PlotParam.NextPlot) end % adjust the size of the plot to include the whole field, if isfield(PlotParam,'FixedLimits') && isequal(PlotParam.FixedLimits,1) %adjust the graph limits* set(haxes,'XLimMode', 'manual') set(haxes,'YLimMode', 'manual') else set(haxes,'XLimMode', 'auto') set(haxes,'YLimMode', 'auto') end legend_str={}; %initiates string of the plot command plotstr='hhh=plot('; textmean={}; % abscissa_name=''; coord_x_index=[]; test_newplot=1; % hh=findobj(haxes,'tag','plot_line'); % num_curve=numel(hh); % icurve=0; for icell=1:length(CellVarIndex) testfalse=0; VarIndex=CellVarIndex{icell};% indices of the selected variables in the list data.ListVarName DimCell=data.VarDimName{VarIndex(1)}; if ischar(DimCell) DimCell={DimCell}; end XName=DimCell{1}; %first dimension considered as abscissa if ~isempty(VarType{icell}.coord_x) coord_x_index=VarType{icell}.coord_x; else coord_x_index_cell=VarType{icell}.coord(1); if isequal(coord_x_index_cell,0) continue % the cell has no abscissa, skip it end if ~isempty(coord_x_index)&&~isequal(coord_x_index_cell,coord_x_index) continue %all the selected variables must have the same first dimension else coord_x_index=coord_x_index_cell; end end testplot=ones(size(data.ListVarName));%default test for plotted variables testcoordvar=0; charplot_0='''-''';%default if isfield(data,'ObjectProjMode')&& isequal(data.ObjectProjMode,'projection') charplot_0='+'; end xtitle=''; xtitle=data.ListVarName{coord_x_index}; eval(['coord_x{icell}=data.' data.ListVarName{coord_x_index} ';']);%coordinate variable set as coord_x if isfield(data,'VarAttribute')&& numel(data.VarAttribute)>=coord_x_index && isfield(data.VarAttribute{coord_x_index},'units') xtitle=[xtitle '(' data.VarAttribute{coord_x_index}.units ')']; end eval(['coord_x{icell}=data.' data.ListVarName{coord_x_index} ';']);%coordinate variable set as coord_x % testcoordvar=1; testplot(coord_x_index)=0; if ~isempty(VarType{icell}.ancillary') testplot(VarType{icell}.ancillary)=0; end if ~isempty(VarType{icell}.warnflag') testplot(VarType{icell}.warnflag)=0; end if isfield(data,'VarAttribute') VarAttribute=data.VarAttribute; for ivar=1:length(VarIndex) if length(VarAttribute)>=VarIndex(ivar) && isfield(VarAttribute{VarIndex(ivar)},'long_name') plotname{VarIndex(ivar)}=VarAttribute{VarIndex(ivar)}.long_name; else plotname{VarIndex(ivar)}=data.ListVarName{VarIndex(ivar)};%name for display in plot A METTRE end end end % test_newplot=0;%default % if num_curve>=icurve+numel(find(testplot(VarIndex)))%update existing curves % if ~isempty(VarType{icell}.discrete') % charplot_0='+'; % LineStyle='none'; % else % charplot_0='none'; % LineStyle='-'; % end % for ivar=1:length(VarIndex) % if testplot(VarIndex(ivar)) % icurve=icurve+1; % VarName=data.ListVarName{VarIndex(ivar)}; % eval(['data.' VarName '=squeeze(data.' VarName ');']) % set(hh(icurve),'LineStyle',LineStyle) % set(hh(icurve),'Marker',charplot_0) % set(hh(icurve),'XData',coord_x{icell}) % eval(['yy=data.' VarName ';']) % set(hh(icurve),'YData',yy); % end % end % else% new plot if ~isempty(VarType{icell}.discrete') charplot_0='''+'''; else charplot_0='''-'''; end for ivar=1:length(VarIndex) if testplot(VarIndex(ivar)) VarName=data.ListVarName{VarIndex(ivar)}; eval(['data.' VarName '=squeeze(data.' VarName ');']) % if isequal(VarName,'A') % charplot='''-'''; % else % charplot=charplot_0; % end plotstr=[plotstr 'coord_x{' num2str(icell) '},data.' VarName ',' charplot_0 ',']; eval(['nbcomponent2=size(data.' VarName ',2);']); eval(['nbcomponent1=size(data.' VarName ',1);']); if numel(coord_x{icell})==2 coord_x{icell}=linspace(coord_x{icell}(1),coord_x{icell}(2),nbcomponent1); end eval(['varmean=mean(double(data.' VarName '));']);%mean value textmean=[textmean; {[VarName 'mean= ' num2str(varmean,4)]}]; if nbcomponent1==1|| nbcomponent2==1 legend_str=[legend_str {VarName}]; %variable with one component else %variable with severals components for ic=1:min(nbcomponent1,nbcomponent2) legend_str=[legend_str [VarName '_' num2str(ic)]]; %variable with severals components end % labeled by their index (e.g. color component) end end end % end end if test_newplot && ~isequal(plotstr,'hhh=plot(') plotstr=[plotstr '''tag'',''plot_line'');']; %execute plot (instruction plotstr) eval(plotstr) %%%%% grid(haxes, 'on') hxlabel=xlabel(xtitle); set(hxlabel,'Interpreter','none')% desable tex interpreter if length(legend_str)>=1 hylabel=ylabel(legend_str{end}); set(hylabel,'Interpreter','none')% desable tex interpreter end if ~isempty(legend_str) hlegend=findobj(hfig,'Tag','legend'); if isempty(hlegend) hlegend=legend(legend_str); txt=ver; Release=txt(1).Release; relnumb=str2num(Release(3:4)); if relnumb >= 14 set(hlegend,'Interpreter','none')% desable tex interpreter end else legend_old=get(hlegend,'String'); if isequal(size(legend_old,1),size(legend_str,1))&&~isequal(legend_old,legend_str) set(hlegend,'String',[legend_old legend_str]); end end end title_str=''; if isfield(data,'filename') [Path, title_str, ext]=fileparts(data.filename); title_str=[title_str ext]; end if isfield(data,'Action') if ~isequal(title_str,'') title_str=[title_str ', ']; end title_str=[title_str data.Action]; end htitle=title(title_str); txt=ver; Release=txt(1).Release; relnumb=str2num(Release(3:4)); if relnumb >= 14 set(htitle,'Interpreter','none')% desable tex interpreter end % A REPRENDRE Mean % hlist=findobj(gcf,'Style','listbox','Tag','liststat'); % if isempty(hlist) % 'text' % textmean % set(gca,'position',[0.13,0.2,0.775,0.73]) % uicontrol('Style','popupmenu','Position',[20 20 200 20],'String',textmean,'Tag','liststat'); % else % set(hlist(1),'String',textmean) % end end %------------------------------------------------------------------- function [AxeData,haxes,PlotParamOut,PlotType]=plot_plane(Data,CellVarIndex,VarTypeCell,haxes,PlotParam,htext,PosColorbar) %------------------------------------------------------------------- grid(haxes, 'off') %default plotting parameters PlotType='plane';%default if ~exist('PlotParam','var') PlotParam=[]; end if ~isfield(PlotParam,'Scalar') PlotParam.Scalar=[]; end if ~isfield(PlotParam,'Vectors') PlotParam.Vectors=[]; end PlotParamOut=PlotParam;%default %plotting axes hfig=get(haxes,'parent'); hcol=findobj(hfig,'Tag','Colorbar'); %look for colorbar axes hima=findobj(haxes,'Tag','ima');% search existing image in the current axes AxeData=get(haxes,'UserData'); %default if ~isstruct(AxeData)% AxeData must be a structure AxeData=[]; end AxeData.NbDim=2; if isfield(Data,'ObjectCoord') AxeData.ObjectCoord=Data.ObjectCoord; end test_ima=0; %default: test for image or map plot test_vec=0; %default: test for vector plots test_black=0; test_false=0; test_C=0; XName=''; x_units=''; YName=''; y_units=''; for icell=1:length(CellVarIndex) % length(CellVarIndex) =1 or 2 (from the calling function) VarType=VarTypeCell{icell}; ivar_X=VarType.coord_x; % defines (unique) index for the variable representing unstructured x coordinate (default =[]) ivar_Y=VarType.coord_y; % defines (unique)index for the variable representing unstructured y coordinate (default =[]) ivar_U=VarType.vector_x; % defines (unique) index for the variable representing x vector component (default =[]) ivar_V=VarType.vector_y; % defines (unique) index for the variable representing y vector component (default =[]) ivar_C=[VarType.scalar VarType.image VarType.color VarType.ancillary]; %defines index (indices) for the scalar or ancillary fields if numel(ivar_C)>1 msgbox_uvmat('ERROR','error in plot_field: too many scalar inputs') return end ivar_F=VarType.warnflag; %defines index (unique) for warning flag variable ivar_FF=VarType.errorflag; %defines index (unique) for error flag variable ind_coord=find(VarType.coord); if numel(ind_coord)==2 VarType.coord=VarType.coord(ind_coord); end % idim_Y=[]; test_grid=0; if ~isempty(ivar_U) && ~isempty(ivar_V)% vector components detected if test_vec msgbox_uvmat('ERROR','error in plot_field: attempt to plot two vector fields') return else test_vec=1; eval(['vec_U=Data.' Data.ListVarName{ivar_U} ';']) eval(['vec_V=Data.' Data.ListVarName{ivar_V} ';']) if ~isempty(ivar_X) && ~isempty(ivar_Y)% 2D field (with unstructured coordinates or structured ones (then ivar_X and ivar_Y empty) eval(['vec_X=Data.' Data.ListVarName{ivar_X} ';']) eval(['vec_Y=Data.' Data.ListVarName{ivar_Y} ';']) elseif numel(VarType.coord)==2 & VarType.coord~=[0 0];%coordinates defines by dimension variables eval(['y=Data.' Data.ListVarName{VarType.coord(1)} ';']) eval(['x=Data.' Data.ListVarName{VarType.coord(2)} ';']) if numel(y)==2 % y defined by first and last values on aregular mesh y=linspace(y(1),y(2),size(vec_U,1)); end if numel(x)==2 % y defined by first and last values on aregular mesh x=linspace(x(1),x(2),size(vec_U,2)); end [vec_X,vec_Y]=meshgrid(x,y); else msgbox_uvmat('ERROR','error in plot_field: invalid coordinate definition for vector field') return end if ~isempty(ivar_C) eval(['vec_C=Data.' Data.ListVarName{ivar_C} ';']) ; vec_C=reshape(vec_C,1,numel(vec_C)); test_C=1; end if ~isempty(ivar_F)%~(isfield(PlotParam.Vectors,'HideWarning')&& isequal(PlotParam.Vectors.HideWarning,1)) if test_vec eval(['vec_F=Data.' Data.ListVarName{ivar_F} ';']) % warning flags for dubious vectors if ~(isfield(PlotParam.Vectors,'HideWarning') && isequal(PlotParam.Vectors.HideWarning,1)) test_black=1; end end end if ~isempty(ivar_FF) %&& ~test_false if test_vec% TODO: deal with FF for structured coordinates eval(['vec_FF=Data.' Data.ListVarName{ivar_FF} ';']) % flags for false vectors end end end elseif ~isempty(ivar_C) %scalar or image if test_ima msgbox_uvmat('ERROR','attempt to plot two scalar fields or images') return end eval(['A=squeeze(Data.' Data.ListVarName{ivar_C} ');']) ;% scalar represented as color image test_ima=1; if ~isempty(ivar_X) && ~isempty(ivar_Y)% 2D field (with unstructured coordinates or structured ones (then ivar_X and ivar_Y empty) XName=Data.ListVarName{ivar_X}; YName=Data.ListVarName{ivar_Y}; eval(['AX=Data.' XName ';']) eval(['AY=Data.' YName ';']) [A,AX,AY]=proj_grid(AX',AY',A',[],[],'np>256'); % interpolate on a grid if isfield(Data,'VarAttribute') if numel(Data.VarAttribute)>=ivar_X && isfield(Data.VarAttribute{ivar_X},'units') x_units=['(' Data.VarAttribute{ivar_X}.units ')']; end if numel(Data.VarAttribute)>=ivar_Y && isfield(Data.VarAttribute{ivar_Y},'units') y_units=['(' Data.VarAttribute{ivar_Y}.units ')']; end end elseif numel(VarType.coord)==2 %structured coordinates XName=Data.ListVarName{VarType.coord(2)}; YName=Data.ListVarName{VarType.coord(1)}; eval(['AY=Data.' Data.ListVarName{VarType.coord(1)} ';']) eval(['AX=Data.' Data.ListVarName{VarType.coord(2)} ';']) test_interp_X=0; %default, regularly meshed X coordinate test_interp_Y=0; %default, regularly meshed Y coordinate if isfield(Data,'VarAttribute') if numel(Data.VarAttribute)>=VarType.coord(2) && isfield(Data.VarAttribute{VarType.coord(2)},'units') x_units=['(' Data.VarAttribute{VarType.coord(2)}.units ')']; end if numel(Data.VarAttribute)>=VarType.coord(1) & isfield(Data.VarAttribute{VarType.coord(1)},'units') y_units=['(' Data.VarAttribute{VarType.coord(1)}.units ')']; end end if numel(AY)>2 DAY=diff(AY); DAY_min=min(DAY); DAY_max=max(DAY); if sign(DAY_min)~=sign(DAY_max);% =1 for increasing values, 0 otherwise errormsg=['errror in plot_field.m: non monotonic dimension variable # ' ListVarName{VarType.coord(1)} ]; return end test_interp_Y=(DAY_max-DAY_min)> 0.0001*abs(DAY_max); end if numel(AX)>2 DAX=diff(AX); DAX_min=min(DAX); DAX_max=max(DAX); if sign(DAX_min)~=sign(DAX_max);% =1 for increasing values, 0 otherwise errormsg=['errror in plot_field.m: non monotonic dimension variable # ' ListVarName{VarType.coord(2)} ]; return end test_interp_X=(DAX_max-DAX_min)> 0.0001*abs(DAX_max); end if test_interp_Y npxy(1)=max([256 floor((AY(end)-AY(1))/DAY_min) floor((AY(end)-AY(1))/DAY_max)]); yI=linspace(AY(1),AY(end),npxy(1)); if ~test_interp_X xI=linspace(AX(1),AX(end),size(A,2));%default AX=xI; end end if test_interp_X npxy(1)=max([256 floor((AX(end)-AX(1))/DAX_min) floor((AX(end)-AX(1))/DAX_max)]); xI=linspace(AX(1),AX(end),npxy(2)); if ~test_interp_Y yI=linspace(AY(1),AY(end),size(A,1)); AY=yI; end end if test_interp_X || test_interp_Y [AX2D,AY2D]=meshgrid(AX,AY); A=interp2(AX2D,AY2D,double(A),xI,yI'); end AX=[AX(1) AX(end)];% keep only the lower and upper bounds for image represnetation AY=[AY(1) AY(end)]; else msgbox_uvmat('ERROR','error in plot_field: invalid coordinate definition ') return end x_label=[Data.ListVarName{ivar_X} '(' x_units ')']; end % if isfield(Data,'VarAttribute') % VarAttribute=Data.VarAttribute; % end end %%%%%%%%%%%%%%%%%%%%% image or scalar plot %%%%%%%%%%%%%%%%%%%%%%%%%% if ~isfield(PlotParam.Scalar,'Contours') PlotParam.Scalar.Contours=0; %default end PlotParamOut=PlotParam; %default if test_ima % distinguish B/W and color images np=size(A);%size of image siz=numel(np); if siz>3 msgbox_uvmat('ERROR','unrecognized scalar type ') return end if siz==3 if np(3)==1 siz=2;%B W image elseif np(3)==3 siz=3;%color image else msgbox_uvmat('ERROR',['unrecognized scalar type: ' num2str(np(3)) ' color components']) return end end %set the color map if isfield(PlotParam.Scalar,'BW') BW=PlotParam.Scalar.BW; %test for BW gray scale images else BW=(siz==2) && (isa(A,'uint8')|| isa(A,'uint16'));% non color images represented in gray scale by default end if siz==2 %for black and white images if ~isfield(PlotParam.Scalar,'AutoScal') PlotParam.Scalar.AutoScal=0;%default end if ~isfield(PlotParam.Scalar,'MinA') PlotParam.Scalar.MinA=[];%default end if ~isfield(PlotParam.Scalar,'MaxA') PlotParam.Scalar.MaxA=[];%default end if isequal(PlotParam.Scalar.AutoScal,0)|isempty(PlotParam.Scalar.MinA)|~isa(PlotParam.Scalar.MinA,'double') %correct if there is no numerical data in edit box MinA=double(min(min(A))); else MinA=PlotParam.Scalar.MinA; end; if isequal(PlotParam.Scalar.AutoScal,0)||isempty(PlotParam.Scalar.MaxA)||~isa(PlotParam.Scalar.MaxA,'double') %correct if there is no numerical data in edit box MaxA=double(max(max(A))); else MaxA=PlotParam.Scalar.MaxA; end; PlotParamOut.Scalar.MinA=MinA; PlotParamOut.Scalar.MaxA=MaxA; axes(haxes) if isequal(PlotParam.Scalar.Contours,1) if ~isempty(hima) & ishandle(hima) delete(hima) end if ~isfield(PlotParam.Scalar,'IncrA') PlotParam.Scalar.IncrA=NaN; end if isnan(PlotParam.Scalar.IncrA)% | PlotParam.Scalar.AutoScal==0 cont=colbartick(MinA,MaxA); intercont=cont(2)-cont(1);%default PlotParamOut.Scalar.IncrA=intercont; else intercont=PlotParam.Scalar.IncrA; end B=A; abscontmin=intercont*floor(MinA/intercont); abscontmax=intercont*ceil(MaxA/intercont); contmin=intercont*floor(min(min(B))/intercont); contmax=intercont*ceil(max(max(B))/intercont); cont_pos_plus=0:intercont:contmax; cont_pos_min=double(contmin):intercont:-intercont; cont_pos=[cont_pos_min cont_pos_plus]; sizpx=(AX(end)-AX(1))/(np(2)-1); sizpy=(AY(1)-AY(end))/(np(1)-1); x_cont=AX(1):sizpx:AX(end); % pixel x coordinates for image display y_cont=AY(1):-sizpy:AY(end); % pixel x coordinates for image display txt=ver;%version of Matlab Release=txt(1).Release; relnumb=str2num(Release(3:4)); if relnumb >= 14 vec=linspace(0,1,(abscontmax-abscontmin)/intercont);%define a greyscale colormap with steps intercont map=[vec' vec' vec']; colormap(map); [var,hcontour]=contour(x_cont,y_cont,B,cont_pos); set(hcontour,'Fill','on') set(hcontour,'LineStyle','none') hold on end [var_p,hcontour_p]=contour(x_cont,y_cont,B,cont_pos_plus,'k-'); hold on [var_m,hcontour_m]=contour(x_cont,y_cont,B,cont_pos_min,':'); set(hcontour_m,'LineColor',[1 1 1]) hold off caxis([abscontmin abscontmax]) colormap(map); end if ~isequal(PlotParam.Scalar.Contours,1) % rescale the grey levels with min and max, put a grey scale colorbar if BW B=A; vec=linspace(0,1,255);%define a linear greyscale colormap map=[vec' vec' vec']; colormap(map); %grey scale color map else B=A; colormap('default'); % standard faulse colors for div, vort , scalar fields end end else %color images axes(haxes) if BW B=uint16(sum(A,3)); else B=uint8(A); end MinA=0; MaxA=255; end if ~isequal(PlotParam.Scalar.Contours,1) %interpolate to increase resolution test_interp=1; if max(np) <= 64 npxy=8*np;% increase the resolution 8 times elseif max(np) <= 128 npxy=4*np;% increase the resolution 4 times elseif max(np) <= 256 npxy=2*np;% increase the resolution 2 times else npxy=np; test_interp=0; % no interpolation done end if test_interp==1%if we interpolate x=linspace(AX(1),AX(2),np(2)); y=linspace(AY(1),AY(2),np(1)); [X,Y]=meshgrid(x,y); xi=linspace(AX(1),AX(2),npxy(2)); yi=linspace(AY(1),AY(2),npxy(1)); B = interp2(X,Y,double(B),xi,yi'); end if isempty(hima) tag=get(haxes,'Tag'); hima=imagesc(AX,AY,B,[MinA MaxA]); set(hima,'Tag','ima','HitTest','off') set(haxes,'Tag',tag);%preserve the axes tag (removed by image fct !!!) else set(hima,'CData',B); if MinAMinA if isequal(PlotParam.Scalar.Contours,1) colbarlim=get(hcol,'YLim'); scale_bar=(colbarlim(2)-colbarlim(1))/(abscontmax-abscontmin); YTick=cont_pos(2:end-1); YTick_scaled=colbarlim(1)+scale_bar*(YTick-abscontmin); set(hcol,'YTick',YTick_scaled); elseif (isfield(PlotParam.Scalar,'BW') & isequal(PlotParam.Scalar.BW,1))|isa(A,'uint8')| isa(A,'uint16')%images hi=get(hcol,'children'); if iscell(hi)%multiple images in colorbar hi=hi{1}; end set(hi,'YData',[MinA MaxA]) set(hi,'CData',[1:256]') set(hcol,'YLim',[MinA MaxA]) YTick=colbartick(MinA,MaxA); set(hcol,'YTick',YTick) else hi=get(hcol,'children'); if iscell(hi)%multiple images in colorbar hi=hi{1}; end set(hi,'YData',[MinA MaxA]) set(hi,'CData',[1:64]') YTick=colbartick(MinA,MaxA); set(hcol,'YLim',[MinA MaxA]) set(hcol,'YTick',YTick) end set(hcol,'Yticklabel',num2str(YTick')); end elseif ishandle(hcol) delete(hcol); %erase existing colorbar if not needed end else%no scalar plot if ~isempty(hima) && ishandle(hima) delete(hima) end if ~isempty(hcol)&& ishandle(hcol) delete(hcol) end AxeData.A=[]; AxeData.AX=[]; AxeData.AY=[]; PlotParamOut=rmfield(PlotParamOut,'Scalar'); end %%%%%%%%%%%%%%%%%%%%% vector plot %%%%%%%%%%%%%%%%%%%%%%%%%% if test_vec %vector scale representation if size(vec_U,1)==numel(vec_Y) && size(vec_U,2)==numel(vec_X); % x, y coordinate variables [vec_X,vec_Y]=meshgrid(vec_X,vec_Y); end vec_X=reshape(vec_X,1,numel(vec_X));%reshape in matlab vectors vec_Y=reshape(vec_Y,1,numel(vec_Y)); vec_U=reshape(vec_U,1,numel(vec_U)); vec_V=reshape(vec_V,1,numel(vec_V)); MinMaxX=max(vec_X)-min(vec_X); MinMaxY=max(vec_Y)-min(vec_Y); AxeData.Mesh=sqrt((MinMaxX*MinMaxY)/length(vec_X)); if ~isfield(PlotParam.Vectors,'AutoVec') || isequal(PlotParam.Vectors.AutoVec,0)|| ~isfield(PlotParam.Vectors,'VecScale')... ||isempty(PlotParam.Vectors.VecScale)||~isa(PlotParam.Vectors.VecScale,'double') %automatic vector scale scale=[]; if test_false %remove false vectors indsel=find(AxeData.FF==0);%indsel =indices of good vectors else indsel=[1:numel(vec_X)];% end if isempty(vec_U) scale=1; else if isempty(indsel) MaxU=max(abs(vec_U)); MaxV=max(abs(vec_V)); else MaxU=max(abs(vec_U(indsel))); MaxV=max(abs(vec_V(indsel))); end scale=MinMaxX/(max(MaxU,MaxV)*50); PlotParam.Vectors.VecScale=scale;%update the 'scale' display end else scale=PlotParam.Vectors.VecScale; %impose the length of vector representation end; %record vectors on the plotting axes if test_C==0 vec_C=ones(1,numel(vec_X)); end AxeData.X=vec_X'; AxeData.Y=vec_Y'; AxeData.U=vec_U'; AxeData.V=vec_V'; AxeData.C=vec_C'; if isempty(ivar_F) AxeData.F=[]; else AxeData.F=vec_F'; end if isempty(ivar_FF) AxeData.FF=[]; else AxeData.FF=vec_FF'; end %decimate by a factor 2 in vector mesh(4 in nbre of vectors) if isfield(PlotParam.Vectors,'decimate4')&isequal(PlotParam.Vectors.decimate4,1) diffy=diff(vec_Y); %difference dy=vec_Y(i+1)-vec_Y(i) dy_thresh=max(abs(diffy))/2; ind_jump=find(abs(diffy) > dy_thresh); %indices with diff(vec_Y)> max/2, detect change of line ind_sel=1:ind_jump(1);%select the first line for i=2:2:length(ind_jump)-1 ind_sel=[ind_sel [ind_jump(i)+1:ind_jump(i+1)]];% select the odd lines end nb_sel=length(ind_sel); ind_sel=ind_sel(1:2:nb_sel);% take half the points on a line vec_X=vec_X(ind_sel); vec_Y=vec_Y(ind_sel); vec_U=vec_U(ind_sel); vec_V=vec_V(ind_sel); vec_C=vec_C(ind_sel); if ~isempty(ivar_F) vec_F=vec_F(ind_sel); end if ~isempty(ivar_FF) vec_FF=vec_FF(ind_sel); end end %get main level color code [colorlist,col_vec,PlotParamOut.Vectors]=set_col_vec(PlotParam.Vectors,vec_C); % take flags into account: add flag colors to the list of colors sizlist=size(colorlist); nbcolor=sizlist(1); if test_black nbcolor=nbcolor+1; colorlist(nbcolor,:)=[0 0 0]; %add black to the list of colors if ~isempty(ivar_FF) ind_flag=find(vec_F~=1 & vec_F~=0 & vec_FF==0); %flag warning but not false else ind_flag=find(vec_F~=1 & vec_F~=0); end col_vec(ind_flag)=nbcolor; end nbcolor=nbcolor+1; if ~isempty(ivar_FF) ind_flag=find(vec_FF~=0); if isfield(PlotParam.Vectors,'HideFalse') && PlotParam.Vectors.HideFalse==1 colorlist(nbcolor,:)=[NaN NaN NaN];% no plot of false vectors else colorlist(nbcolor,:)=[1 0 1];% magenta color end col_vec(ind_flag)=nbcolor; end %plot vectors: quiresetn(haxes,vec_X,vec_Y,vec_U,vec_V,scale,colorlist,col_vec); else hvec=findobj(haxes,'Tag','vel'); if ~isempty(hvec) delete(hvec); end AxeData.X=[]; AxeData.Y=[]; AxeData.U=[]; AxeData.V=[]; AxeData.C=[]; AxeData.W=[]; AxeData.F=[]; AxeData.FF=[]; AxeData.Mesh=[]; PlotParamOut=rmfield(PlotParamOut,'Vectors'); end if isfield(Data,'Z') AxeData.Z=Data.Z;% A REVOIR end listfields={'AY','AX','A','X','Y','U','V','C','W','F','FF'}; listdim={'AY','AX',{'AY','AX'},'nb_vectors','nb_vectors','nb_vectors','nb_vectors','nb_vectors','nb_vectors','nb_vectors','nb_vectors'}; Role={'coord_y','coord_x','scalar','coord_x','coord_y','vector_x','vector_y','scalar','vector_z','warnflag','errorflag'}; ind_select=[]; nbvar=0; AxeData.ListVarName={}; AxeData.VarDimName={}; AxeData.VarAttribute={}; for ilist=1:numel(listfields) eval(['testvar=isfield(AxeData,listfields{ilist}) && ~isempty(AxeData.' listfields{ilist} ');']) if testvar nbvar=nbvar+1; AxeData.ListVarName{nbvar}=listfields{ilist}; AxeData.VarDimName{nbvar}=listdim{ilist}; AxeData.VarAttribute{nbvar}.Role=Role{ilist}; end end %store the coordinate extrema occupied by the field test_lim=0; if test_vec Xlim=[min(vec_X) max(vec_X)]; Ylim=[min(vec_Y) max(vec_Y)]; test_lim=1; if test_ima%both background image and vectors coexist, take the wider bound Xlim(1)=min(AX(1),Xlim(1)); Xlim(2)=max(AX(end),Xlim(2)); Ylim(1)=min(AY(end),Ylim(1)); Ylim(2)=max(AY(1),Ylim(2)); end elseif test_ima %only image plot Xlim(1)=min(AX(1),AX(end)); Xlim(2)=max(AX(1),AX(end)); Ylim(1)=min(AY(1),AY(end)); Ylim(2)=max(AY(1),AY(end)); test_lim=1; end AxeData.RangeX=Xlim; AxeData.RangeY=Ylim; % adjust the size of the plot to include the whole field, except if PlotParam.FixedLimits=1 if ~(isfield(PlotParam,'FixedLimits') && PlotParam.FixedLimits) && test_lim if Xlim(2)>Xlim(1) set(haxes,'XLim',Xlim);% set x limits of frame in axes coordinates end if Ylim(2)>Ylim(1) set(haxes,'YLim',Ylim);% set y limits of frame in axes coordinate end end if ~(isfield(PlotParam,'Auto_xy') && isequal(PlotParam.Auto_xy,1)) set(haxes,'DataAspectRatio',[1 1 1]) end set(haxes,'YDir','normal') set(get(haxes,'XLabel'),'String',[XName x_units]); set(get(haxes,'YLabel'),'String',[YName y_units]); %------------------------------------------------------------------- % --- function for plotting vectors %INPUT: % haxes: handles of the plotting axes % x,y,u,v: vectors coordinates and vector components to plot, arrays withb the same dimension % scale: scaling factor for vector length representation % colorlist(icolor,:): list of vector colors, dim (nbcolor,3), depending on color #i % col_vec: matlab vector setting the color number #i for each velocity vector function quiresetn(haxes,x,y,u,v,scale,colorlist,col_vec) %------------------------------------------------------------------- %define arrows theta=0.5 ;%angle arrow alpha=0.3 ;%length arrow rot=alpha*[cos(theta) -sin(theta); sin(theta) cos(theta)]'; %find the existing lines %h=findobj(gca,'Type','Line');% search existing lines in the current axes h=findobj(haxes,'Tag','vel');% search existing lines in the current axes sizh=size(h); set(h,'EraseMode','xor'); set(haxes,'NextPlot','replacechildren'); %drawnow %create lines (if no lines) or modify them if ~isequal(size(col_vec),size(x)) col_vec=ones(size(x));% case of error in col_vec input end sizlist=size(colorlist); ncolor=sizlist(1); for icolor=1:ncolor %determine the line positions for each color icolor ind=find(col_vec==icolor); xc=x(ind); yc=y(ind); uc=u(ind)*scale; vc=v(ind)*scale; n=size(xc); xN=NaN*ones(size(xc)); matx=[xc(:)-uc(:)/2 xc(:)+uc(:)/2 xN(:)]'; % matx=[xc(:) xc(:)+uc(:) xN(:)]'; matx=reshape(matx,1,3*n(2)); maty=[yc(:)-vc(:)/2 yc(:)+vc(:)/2 xN(:)]'; % maty=[yc(:) yc(:)+vc(:) xN(:)]'; maty=reshape(maty,1,3*n(2)); %determine arrow heads arrowplus=rot*[uc;vc]; arrowmoins=rot'*[uc;vc]; x1=xc+uc/2-arrowplus(1,:); x2=xc+uc/2; x3=xc+uc/2-arrowmoins(1,:); y1=yc+vc/2-arrowplus(2,:); y2=yc+vc/2; y3=yc+vc/2-arrowmoins(2,:); % x1=xc+uc-arrowplus(1,:); % x2=xc+uc; % x3=xc+uc-arrowmoins(1,:); % y1=yc+vc-arrowplus(2,:); % y2=yc+vc; % y3=yc+vc-arrowmoins(2,:); matxar=[x1(:) x2(:) x3(:) xN(:)]'; matxar=reshape(matxar,1,4*n(2)); matyar=[y1(:) y2(:) y3(:) xN(:)]'; matyar=reshape(matyar,1,4*n(2)); %draw the line or modify the existing ones hx = [x1;x2;x3]; hy = [y1;y2;y3]; tri=reshape([1:3*length(uc)],3,[])'; d = tri(:,[1 2 3 1])'; isn=isnan(colorlist(icolor,:));%test if color NaN if 2*icolor > sizh(1) %if icolor exceeds the number of existing ones axes(haxes) if ~isn(1) %if the vectors are visible color not nan if n(2)>0 hold on line(matx,maty,'Color',colorlist(icolor,:),'Tag','vel');% plot new lines line(matxar,matyar,'Color',colorlist(icolor,:),'Tag','vel');% plot arrows % fill(hx(d),hy(d),colorlist(icolor,:),'EdgeColor','none',' % Tag','Vel'); end end else if isn(1) delete(h(2*icolor-1)) delete(h(2*icolor)) else set(h(2*icolor-1),'Xdata',matx,'Ydata',maty); set(h(2*icolor-1),'Color',colorlist(icolor,:)); set(h(2*icolor-1),'EraseMode','xor'); set(h(2*icolor),'Xdata',matxar,'Ydata',matyar); set(h(2*icolor),'Color',colorlist(icolor,:)); set(h(2*icolor),'EraseMode','xor'); end end end if sizh(1) > 2*ncolor for icolor=ncolor+1 : sizh(1)/2%delete additional objects delete(h(2*icolor-1)) delete(h(2*icolor)) end end %------------------------------------------------------------------- % ---- determine tick positions for colorbar function YTick=colbartick(MinA,MaxA) %------------------------------------------------------------------- %determine tick positions with "simple" values between MinA and MaxA YTick=0;%default maxabs=max([abs(MinA) abs(MaxA)]); if maxabs>0 ord=10^(floor(log10(maxabs)));%order of magnitude div=1; siz2=1; while siz2<2 % values=[-9:div:9]; values=-10:div:10; ind=find((ord*values-MaxA)<0 & (ord*values-MinA)>0);%indices of 'values' such that MinA0); end siz2=size(ind,2); % siz2=siz(2) div=div/10; end YTick=ord*values(ind); end