| 1 | %'bed_scan': get the bed shape from laser impact |
|---|
| 2 | % firts line input files = active images |
|---|
| 3 | % second line, reference images for the initial bed |
|---|
| 4 | |
|---|
| 5 | %------------------------------------------------------------------------ |
|---|
| 6 | % function GUI_input=bed_scan(Param) |
|---|
| 7 | % |
|---|
| 8 | %------------------------------------------------------------------------ |
|---|
| 9 | %%%%%%%%%%% GENERAL TO ALL SERIES ACTION FCTS %%%%%%%%%%%%%%%%%%%%%%%%%%% |
|---|
| 10 | % |
|---|
| 11 | %OUTPUT |
|---|
| 12 | % ParamOut: sets options in the GUI series.fig needed for the function |
|---|
| 13 | % |
|---|
| 14 | %INPUT: |
|---|
| 15 | % In run mode, the input parameters are given as a Matlab structure Param copied from the GUI series. |
|---|
| 16 | % In batch mode, Param is the name of the corresponding xml file containing the same information |
|---|
| 17 | % when Param.Action.RUN=0 (as activated when the current Action is selected |
|---|
| 18 | % in series), the function ouput paramOut set the activation of the needed GUI elements |
|---|
| 19 | % |
|---|
| 20 | % Param contains the elements:(use the menu bar command 'export/GUI config' in series to |
|---|
| 21 | % see the current structure Param) |
|---|
| 22 | % .InputTable: cell of input file names, (several lines for multiple input) |
|---|
| 23 | % each line decomposed as {RootPath,SubDir,Rootfile,NomType,Extension} |
|---|
| 24 | % .OutputSubDir: name of the subdirectory for data outputs |
|---|
| 25 | % .OutputDirExt: directory extension for data outputs |
|---|
| 26 | % .Action: .ActionName: name of the current activated function |
|---|
| 27 | % .ActionPath: path of the current activated function |
|---|
| 28 | % .ActionExt: fct extension ('.m', Matlab fct, '.sh', compiled Matlab fct |
|---|
| 29 | % .RUN =0 for GUI input, =1 for function activation |
|---|
| 30 | % .RunMode='local','background', 'cluster': type of function use |
|---|
| 31 | % |
|---|
| 32 | % .IndexRange: set the file or frame indices on which the action must be performed |
|---|
| 33 | % .FieldTransform: .TransformName: name of the selected transform function |
|---|
| 34 | % .TransformPath: path of the selected transform function |
|---|
| 35 | % .InputFields: sub structure describing the input fields withfields |
|---|
| 36 | % .FieldName: name(s) of the field |
|---|
| 37 | % .VelType: velocity type |
|---|
| 38 | % .FieldName_1: name of the second field in case of two input series |
|---|
| 39 | % .VelType_1: velocity type of the second field in case of two input series |
|---|
| 40 | % .Coord_y: name of y coordinate variable |
|---|
| 41 | % .Coord_x: name of x coordinate variable |
|---|
| 42 | % .ProjObject: %sub structure describing a projection object (read from ancillary GUI set_object) |
|---|
| 43 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|---|
| 44 | |
|---|
| 45 | %======================================================================= |
|---|
| 46 | % Copyright 2008-2024, LEGI UMR 5519 / CNRS UGA G-INP, Grenoble, France |
|---|
| 47 | % http://www.legi.grenoble-inp.fr |
|---|
| 48 | % Joel.Sommeria - Joel.Sommeria (A) univ-grenoble-alpes.fr |
|---|
| 49 | % |
|---|
| 50 | % This file is part of the toolbox UVMAT. |
|---|
| 51 | % |
|---|
| 52 | % UVMAT is free software; you can redistribute it and/or modify |
|---|
| 53 | % it under the terms of the GNU General Public License as published |
|---|
| 54 | % by the Free Software Foundation; either version 2 of the license, |
|---|
| 55 | % or (at your option) any later version. |
|---|
| 56 | % |
|---|
| 57 | % UVMAT is distributed in the hope that it will be useful, |
|---|
| 58 | % but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 59 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 60 | % GNU General Public License (see LICENSE.txt) for more details. |
|---|
| 61 | %======================================================================= |
|---|
| 62 | |
|---|
| 63 | function ParamOut=bed_scan (Param) |
|---|
| 64 | |
|---|
| 65 | %% set the input elements needed on the GUI series when the action is selected in the menu ActionName or InputTable refreshed |
|---|
| 66 | if isstruct(Param) && isequal(Param.Action.RUN,0) |
|---|
| 67 | ParamOut.NbViewMax=1;% max nbre of input file series (default , no limitation) |
|---|
| 68 | ParamOut.AllowInputSort='off';% allow alphabetic sorting of the list of input file SubDir (options 'off'/'on', 'off' by default) |
|---|
| 69 | ParamOut.WholeIndexRange='off';% prescribes the file index ranges from min to max (options 'off'/'on', 'off' by default) |
|---|
| 70 | ParamOut.NbSlice=1; %nbre of slices ('off' by default) |
|---|
| 71 | ParamOut.VelType='off';% menu for selecting the velocity type (options 'off'/'one'/'two', 'off' by default) |
|---|
| 72 | ParamOut.FieldName='one';% menu for selecting the field (s) in the input file(options 'off'/'one'/'two', 'off' by default) |
|---|
| 73 | ParamOut.FieldTransform = 'off';%can use a transform function |
|---|
| 74 | ParamOut.ProjObject='off';%can use projection object(option 'off'/'on', |
|---|
| 75 | ParamOut.Mask='off';%can use mask option (option 'off'/'on', 'off' by default) |
|---|
| 76 | ParamOut.OutputDirExt='.bed';%set the output dir extension |
|---|
| 77 | ParamOut.OutputFileMode='NbSlice';% ='=NbInput': 1 output file per input file index, '=NbInput_i': 1 file per input file index i, '=NbSlice': 1 file per slice |
|---|
| 78 | %check the type of the existence and type of the first input file: |
|---|
| 79 | Param.IndexRange.last_i=Param.IndexRange.first_i;%keep only the first index in the series |
|---|
| 80 | if isfield(Param.IndexRange,'first_j') |
|---|
| 81 | Param.IndexRange.last_j=Param.IndexRange.first_j; |
|---|
| 82 | end |
|---|
| 83 | filecell=get_file_series(Param); |
|---|
| 84 | if ~exist(filecell{1,1},'file') |
|---|
| 85 | msgbox_uvmat('WARNING','the first input file does not exist') |
|---|
| 86 | else |
|---|
| 87 | FileInfo=get_file_info(filecell{1,1}); |
|---|
| 88 | FileType=FileInfo.FileType; |
|---|
| 89 | if isempty(find(strcmp(FileType,{'image','multimage','mmreader','video'})))% =1 for images |
|---|
| 90 | msgbox_uvmat('ERROR',['bad input file type for ' mfilename ': an image is needed']) |
|---|
| 91 | end |
|---|
| 92 | end |
|---|
| 93 | return |
|---|
| 94 | end |
|---|
| 95 | |
|---|
| 96 | %%%%%%%%%%%% STANDARD PART (DO NOT EDIT) %%%%%%%%%%%% |
|---|
| 97 | %% read input parameters from an xml file if input is a file name (batch mode) |
|---|
| 98 | ParamOut=[]; |
|---|
| 99 | RUNHandle=[]; |
|---|
| 100 | WaitbarHandle=[]; |
|---|
| 101 | checkrun=1; |
|---|
| 102 | if ischar(Param)% case of batch: Param is the name of the xml file containing the input parameters |
|---|
| 103 | Param=xml2struct(Param);% read Param as input file (batch case) |
|---|
| 104 | checkrun=0; |
|---|
| 105 | else% interactive mode in Matlab |
|---|
| 106 | hseries=findobj(allchild(0),'Tag','series'); |
|---|
| 107 | RUNHandle=findobj(hseries,'Tag','RUN');%handle of RUN button in GUI series |
|---|
| 108 | WaitbarHandle=findobj(hseries,'Tag','Waitbar');%handle of waitbar in GUI series |
|---|
| 109 | end |
|---|
| 110 | |
|---|
| 111 | %% root input file names and nomenclature type (cell arrays with one element) |
|---|
| 112 | RootPath=Param.InputTable{1,1}; |
|---|
| 113 | |
|---|
| 114 | |
|---|
| 115 | %% directory for output files |
|---|
| 116 | DirOut=fullfile(RootPath,[Param.OutputSubDir Param.OutputDirExt]); |
|---|
| 117 | |
|---|
| 118 | %% get the set of input file names (cell array filecell), and file indices |
|---|
| 119 | [filecell,i1_series,i2_series,j1_series,j2_series]=get_file_series(Param); |
|---|
| 120 | % filecell{iview,fileindex}: cell array representing the list of file names |
|---|
| 121 | % iview: line in the table corresponding to a given file series |
|---|
| 122 | % fileindex: file index within the file series, |
|---|
| 123 | % i1_series(iview,ref_j,ref_i)... are the corresponding arrays of indices i1,i2,j1,j2, depending on the input line iview and the two reference indices ref_i,ref_j |
|---|
| 124 | % i1_series(iview,fileindex) expresses the same indices as a 1D array in file indices |
|---|
| 125 | nbfield_j=size(i1_series{1},1); %nb of fields for the j index (bursts or volume slices) |
|---|
| 126 | nbfield_i=size(i1_series{1},2); %nb of fields for the i index |
|---|
| 127 | |
|---|
| 128 | %% set of y positions |
|---|
| 129 | ycalib=[-51 -1 49];% calibration planes |
|---|
| 130 | y_scan=-51+(100/400)*(i1_series{1}-1);% transverse position given by the translating system: first view at y=-51, view 400 at y=+49 |
|---|
| 131 | Mfiltre=ones(2,10)/20;%filter matrix for imnages |
|---|
| 132 | |
|---|
| 133 | %% calibration data and timing: read the ImaDoc files |
|---|
| 134 | XmlData_A=xml2struct(fullfile(RootPath,'planeA.xml')); |
|---|
| 135 | XmlData_B=xml2struct(fullfile(RootPath,'planeB.xml')); |
|---|
| 136 | XmlData_C=xml2struct(fullfile(RootPath,'planeC.xml')); |
|---|
| 137 | ycalib=[-51 -1 49];% the three y positions for calibration |
|---|
| 138 | fx(1)=XmlData_A.GeometryCalib.fx_fy(1); |
|---|
| 139 | fx(2)=XmlData_B.GeometryCalib.fx_fy(1); |
|---|
| 140 | fx(3)=XmlData_C.GeometryCalib.fx_fy(1); |
|---|
| 141 | fy(1)=XmlData_A.GeometryCalib.fx_fy(2); |
|---|
| 142 | fy(2)=XmlData_B.GeometryCalib.fx_fy(2); |
|---|
| 143 | fy(3)=XmlData_C.GeometryCalib.fx_fy(2); |
|---|
| 144 | Tx(1)=XmlData_A.GeometryCalib.Tx_Ty_Tz(1); |
|---|
| 145 | Tx(2)=XmlData_B.GeometryCalib.Tx_Ty_Tz(1); |
|---|
| 146 | Tx(3)=XmlData_C.GeometryCalib.Tx_Ty_Tz(1); |
|---|
| 147 | Ty(1)=XmlData_A.GeometryCalib.Tx_Ty_Tz(2); |
|---|
| 148 | Ty(2)=XmlData_B.GeometryCalib.Tx_Ty_Tz(2); |
|---|
| 149 | Ty(3)=XmlData_C.GeometryCalib.Tx_Ty_Tz(2); |
|---|
| 150 | R11(1)=XmlData_A.GeometryCalib.R(1,1); |
|---|
| 151 | R11(2)=XmlData_B.GeometryCalib.R(1,1); |
|---|
| 152 | R11(3)=XmlData_C.GeometryCalib.R(1,1); |
|---|
| 153 | R12(1)=XmlData_A.GeometryCalib.R(1,2); |
|---|
| 154 | R12(2)=XmlData_B.GeometryCalib.R(1,2); |
|---|
| 155 | R12(3)=XmlData_C.GeometryCalib.R(1,2); |
|---|
| 156 | R21(1)=XmlData_A.GeometryCalib.R(2,1); |
|---|
| 157 | R21(2)=XmlData_B.GeometryCalib.R(2,1); |
|---|
| 158 | R21(3)=XmlData_C.GeometryCalib.R(2,1); |
|---|
| 159 | R22(1)=XmlData_A.GeometryCalib.R(2,2); |
|---|
| 160 | R22(2)=XmlData_B.GeometryCalib.R(2,2); |
|---|
| 161 | R22(3)=XmlData_C.GeometryCalib.R(2,2); |
|---|
| 162 | pfx=polyfit(ycalib,fx,1);%get the linear interpolation of each parameter of the three calibrations |
|---|
| 163 | pfy=polyfit(ycalib,fy,1); |
|---|
| 164 | pTx=polyfit(ycalib,Tx,1); |
|---|
| 165 | pTy=polyfit(ycalib,Ty,1); |
|---|
| 166 | p11=polyfit(ycalib,R11,1); |
|---|
| 167 | p12=polyfit(ycalib,R12,1); |
|---|
| 168 | p21=polyfit(ycalib,R21,1); |
|---|
| 169 | p22=polyfit(ycalib,R22,1); |
|---|
| 170 | %get the calibration parameters at each position y by interpolation of the 3 calibration parameters |
|---|
| 171 | for img=1:nbfield_i |
|---|
| 172 | Calib(img).fx_fy(1)=pfx(1)*y_scan(img)+pfx(2); |
|---|
| 173 | Calib(img).fx_fy(2)=pfy(1)*y_scan(img)+pfy(2); |
|---|
| 174 | Calib(img).Tx_Ty_Tz(1)=pTx(1)*y_scan(img)+pTx(2); |
|---|
| 175 | Calib(img).Tx_Ty_Tz(2)=pTy(1)*y_scan(img)+pTy(2); |
|---|
| 176 | Calib(img).Tx_Ty_Tz(3)=1; |
|---|
| 177 | Calib(img).R=zeros(3,3); |
|---|
| 178 | Calib(img).R(3,3)=-1; |
|---|
| 179 | Calib(img).R(1,2)=p12(1)*y_scan(img)+p12(2); |
|---|
| 180 | Calib(img).R(1,1)=p11(1)*y_scan(img)+p11(2); |
|---|
| 181 | Calib(img).R(1,2)=p12(1)*y_scan(img)+p12(2); |
|---|
| 182 | Calib(img).R(2,1)=p21(1)*y_scan(img)+p21(2); |
|---|
| 183 | Calib(img).R(2,2)=p22(1)*y_scan(img)+p22(2); |
|---|
| 184 | end |
|---|
| 185 | |
|---|
| 186 | %% check coincdence in time for several input file series |
|---|
| 187 | %not relevant for this function |
|---|
| 188 | |
|---|
| 189 | %% coordinate transform or other user defined transform |
|---|
| 190 | %not relevant for this function |
|---|
| 191 | |
|---|
| 192 | %%%%%%%%%%%% END STANDARD PART %%%%%%%%%%%% |
|---|
| 193 | % EDIT FROM HERE |
|---|
| 194 | |
|---|
| 195 | %% Load the init bed scan |
|---|
| 196 | tic |
|---|
| 197 | nb_scan=10; |
|---|
| 198 | for img=1:nb_scan |
|---|
| 199 | img |
|---|
| 200 | a=flipud(imread(filecell{1,img}));%image of the initial bed |
|---|
| 201 | if img==1 |
|---|
| 202 | x=1:size(a,2);%image absissa in pixel coordinates |
|---|
| 203 | end |
|---|
| 204 | % filtering |
|---|
| 205 | a=filter2(Mfiltre,a);%smoothed image |
|---|
| 206 | [imax,iy]=max(a);% find the max along the first coordinate y, max values imax and the corresponding y index iy along the first coordinate y |
|---|
| 207 | Z_s(img,:)=smooth(iy,40,'rloess');%smooth Z, the image index of max luminosity (dependning on x) |
|---|
| 208 | Yima=y_scan(img)*ones(size(x));%positions Y transformed into a vector |
|---|
| 209 | X_new(img,:)=phys_XYZ(Calib(img),x,Yima,1); |
|---|
| 210 | %X_new(:,img)=phys_scan(x,y(img)); |
|---|
| 211 | end |
|---|
| 212 | |
|---|
| 213 | toc |
|---|
| 214 | |
|---|
| 215 | [X,Y]=meshgrid(x,y_scan); |
|---|
| 216 | |
|---|
| 217 | |
|---|
| 218 | %% Load the current bed scan |
|---|
| 219 | for img=1:nb_scan |
|---|
| 220 | b=flipud(imread(filecell{2,img}));%image of the current bed |
|---|
| 221 | b=filter2(Mfiltre,b); % filtering |
|---|
| 222 | [imaxb,iyb]=max(b); |
|---|
| 223 | Z_sb(img,:)=smooth(iyb,20,'rloess'); |
|---|
| 224 | end |
|---|
| 225 | |
|---|
| 226 | %% bed change |
|---|
| 227 | dZ=Z_s-Z_sb;% displacement between current position and initial |
|---|
| 228 | dZ_new=zeros(nb_scan,size(dZ,2)); |
|---|
| 229 | for img=1:nb_scan |
|---|
| 230 | Yima=y_scan(img)*ones(1,size(dZ,2)); |
|---|
| 231 | [~,dZ_new(img,:)]=phys_XYZ(Calib(img),dZ(img,:),Yima,1); |
|---|
| 232 | % dZ_new(:,img)=phys_scanz(dZ(:,img),y(img)); |
|---|
| 233 | end |
|---|
| 234 | |
|---|
| 235 | |
|---|
| 236 | %% PLOTS |
|---|
| 237 | coord_x=X_new(end,1):0.1:X_new(end,end); |
|---|
| 238 | [Y_m,X_m]=meshgrid(y_scan,coord_x); |
|---|
| 239 | %Y_new=Y'; |
|---|
| 240 | dZ_mesh=griddata(X_new,Y,dZ_new,X_m,Y_m); |
|---|
| 241 | |
|---|
| 242 | if checkrun |
|---|
| 243 | figure(1) |
|---|
| 244 | hold on |
|---|
| 245 | plot(x,Z_s+700) |
|---|
| 246 | % xlim([0 4096]) |
|---|
| 247 | % ylim([0 3000]) |
|---|
| 248 | |
|---|
| 249 | figure(2) |
|---|
| 250 | hold on |
|---|
| 251 | plot(x,Z_sb+700) |
|---|
| 252 | xlim([0 4096]) |
|---|
| 253 | ylim([0 3000]) |
|---|
| 254 | |
|---|
| 255 | figure(3) |
|---|
| 256 | surfc(X_m,Y_m,dZ_mesh) |
|---|
| 257 | shading interp; |
|---|
| 258 | colorbar; |
|---|
| 259 | caxis([0 3]); |
|---|
| 260 | |
|---|
| 261 | figure |
|---|
| 262 | pcolor(X_m,Y_m,dZ_mesh); |
|---|
| 263 | colormap; |
|---|
| 264 | set(gca,'Xdir','reverse'); |
|---|
| 265 | caxis([0 3]); |
|---|
| 266 | shading flat |
|---|
| 267 | hold on |
|---|
| 268 | colorbar |
|---|
| 269 | title('Dz') |
|---|
| 270 | end |
|---|
| 271 | |
|---|
| 272 | %save(fullfile(DirOut,'18OS_f.mat'),'dZ','dZ_new','X','Y','Z_s','Z_sb','y') |
|---|
| 273 | |
|---|
| 274 | % save netcdf |
|---|
| 275 | Data.ListVarName={'coord_x','coord_y','dZ'}; |
|---|
| 276 | Data.VarDimName={'coord_x','coord_y',{'coord_y','coord_x'}}; |
|---|
| 277 | Data.VarAttribute{1}.Role='coord_x'; |
|---|
| 278 | Data.VarAttribute{1}.unit='cm'; |
|---|
| 279 | Data.VarAttribute{2}.Role='coord_y'; |
|---|
| 280 | Data.VarAttribute{2}.unit='cm'; |
|---|
| 281 | Data.VarAttribute{3}.Role='scalar'; |
|---|
| 282 | Data.VarAttribute{3}.unit='cm'; |
|---|
| 283 | Data.coord_x=[coord_x(1) coord_x(end)]; |
|---|
| 284 | Data.coord_y=[y(1) y(end)]; |
|---|
| 285 | Data.dZ=dZ_mesh'; |
|---|
| 286 | struct2nc(fullfile(DirOut,'dZ.nc'),Data) |
|---|
| 287 | |
|---|
| 288 | %% gives the physical position x from the image position X and the physical position y of the laser plane |
|---|
| 289 | function F=phys_scan(X,y) |
|---|
| 290 | % linear fct of X whose coefficient depend on y in a quadratic way |
|---|
| 291 | F=(9.4*10^(-7)*y.^2-3.09*10^(-4)*y+0.07).*X +(-0.001023*y.^2+0.469*y+186.9); |
|---|
| 292 | |
|---|
| 293 | %% gives the physical position z from the image position Z and the physical position y of the laser plane |
|---|
| 294 | function Fz=phys_scanz(Z,y) |
|---|
| 295 | % scale factor applied to Z depending on the physical position y of the laser plane |
|---|
| 296 | Fz=(-1.4587*10^(-5)*y.^2 + 0.001072*y+0.0833).*Z; %+(-2.1*10^(-6)*x.^2+5.1*10^(-4)*x+0.0735).*Z; |
|---|
| 297 | |
|---|
| 298 | |
|---|