1 | % 'check_peaklocking': estimte peaklocking error in a civ field series TODO: UPDATE |
---|
2 | %------------------------------------------------------------------------ |
---|
3 | % function ParamOut=check_peaklocking(Param) |
---|
4 | % |
---|
5 | %%%%%%%%%%% GENERAL TO ALL SERIES ACTION FCTS %%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
6 | % |
---|
7 | % This function is used in four modes by the GUI series: |
---|
8 | % 1) config GUI: with no input argument, the function determine the suitable GUI configuration |
---|
9 | % 2) interactive input: the function is used to interactively introduce input parameters, and then stops |
---|
10 | % 3) RUN: the function itself runs, when an appropriate input structure Param has been introduced. |
---|
11 | % 4) BATCH: the function itself proceeds in BATCH mode, using an xml file 'Param' as input. |
---|
12 | % |
---|
13 | % This function is used in four modes by the GUI series: |
---|
14 | % 1) config GUI: with no input argument, the function determine the suitable GUI configuration |
---|
15 | % 2) interactive input: the function is used to interactively introduce input parameters, and then stops |
---|
16 | % 3) RUN: the function itself runs, when an appropriate input structure Param has been introduced. |
---|
17 | % 4) BATCH: the function itself proceeds in BATCH mode, using an xml file 'Param' as input. |
---|
18 | % |
---|
19 | %OUTPUT |
---|
20 | % GUI_input=list of options in the GUI series.fig needed for the function |
---|
21 | % |
---|
22 | %INPUT: |
---|
23 | % In run mode, the input parameters are given as a Matlab structure Param copied from the GUI series. |
---|
24 | % In batch mode, Param is the name of the corresponding xml file containing the same information |
---|
25 | % In the absence of input (as activated when the current Action is selected |
---|
26 | % in series), the function ouput GUI_input set the activation of the needed GUI elements |
---|
27 | % |
---|
28 | % Param contains the elements:(use the menu bar command 'export/GUI config' in series to see the current structure Param) |
---|
29 | % .InputTable: cell of input file names, (several lines for multiple input) |
---|
30 | % each line decomposed as {RootPath,SubDir,Rootfile,NomType,Extension} |
---|
31 | % .OutputSubDir: name of the subdirectory for data outputs |
---|
32 | % .OutputDirExt: directory extension for data outputs |
---|
33 | % .Action: .ActionName: name of the current activated function |
---|
34 | % .ActionPath: path of the current activated function |
---|
35 | % .IndexRange: set the file or frame indices on which the action must be performed |
---|
36 | % .FieldTransform: .TransformName: name of the selected transform function |
---|
37 | % .TransformPath: path of the selected transform function |
---|
38 | % .TransformHandle: corresponding function handle |
---|
39 | % .InputFields: sub structure describing the input fields withfields |
---|
40 | % .FieldName: name of the field |
---|
41 | % .VelType: velocity type |
---|
42 | % .FieldName_1: name of the second field in case of two input series |
---|
43 | % .VelType_1: velocity type of the second field in case of two input series |
---|
44 | % .ProjObject: %sub structure describing a projection object (read from ancillary GUI set_object) |
---|
45 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
46 | function ParamOut=check_peaklocking(Param) |
---|
47 | |
---|
48 | %% set the input elements needed on the GUI series when the action is selected in the menu ActionName |
---|
49 | if ~exist('Param','var') % case with no input parameter |
---|
50 | ParamOut={'AllowInputSort';'off';...% allow alphabetic sorting of the list of input files (options 'off'/'on', 'off' by default) |
---|
51 | 'WholeIndexRange';'off';...% prescribes the file index ranges from min to max (options 'off'/'on', 'off' by default) |
---|
52 | 'NbSlice';'on'; ...%nbre of slices ('off' by default) |
---|
53 | 'VelType';'two';...% menu for selecting the velocity type (options 'off'/'one'/'two', 'off' by default) |
---|
54 | 'FieldName';'off';...% menu for selecting the field (s) in the input file(options 'off'/'one'/'two', 'off' by default) |
---|
55 | 'FieldTransform'; 'off';...%can use a transform function |
---|
56 | 'ProjObject';'on';...%can use projection object(option 'off'/'on', |
---|
57 | 'Mask';'off';...%can use mask option (option 'off'/'on', 'off' by default) |
---|
58 | 'OutputDirExt';'.pklock';...%set the output dir extension |
---|
59 | ''}; |
---|
60 | return |
---|
61 | end |
---|
62 | |
---|
63 | %%%%%%%%%%%% STANDARD PART %%%%%%%%%%%% |
---|
64 | %% select different modes, RUN, parameter input, BATCH |
---|
65 | % BATCH case: read the xml file for batch case |
---|
66 | if ischar(Param) |
---|
67 | Param=xml2struct(Param); |
---|
68 | checkrun=0; |
---|
69 | % RUN case: parameters introduced as the input structure Param |
---|
70 | else |
---|
71 | hseries=guidata(Param.hseries);%handles of the GUI series |
---|
72 | if isfield(Param,'Specific')&& strcmp(Param.Specific,'?') |
---|
73 | checkrun=1;% will only search interactive input parameters (preparation of BATCH mode) |
---|
74 | else |
---|
75 | checkrun=2; % indicate the RUN option is used |
---|
76 | end |
---|
77 | end |
---|
78 | ParamOut=Param; %default output |
---|
79 | OutputDir=[Param.OutputSubDir Param.OutputDirExt]; |
---|
80 | |
---|
81 | %% root input file(s) and type |
---|
82 | RootPath=Param.InputTable(:,1); |
---|
83 | RootFile=Param.InputTable(:,3); |
---|
84 | SubDir=Param.InputTable(:,2); |
---|
85 | NomType=Param.InputTable(:,4); |
---|
86 | FileExt=Param.InputTable(:,5); |
---|
87 | [filecell,i1_series,i2_series,j1_series,j2_series]=get_file_series(Param); |
---|
88 | %%%%%%%%%%%% |
---|
89 | % The cell array filecell is the list of input file names, while |
---|
90 | % filecell{iview,fileindex}: |
---|
91 | % iview: line in the table corresponding to a given file series |
---|
92 | % fileindex: file index within the file series, |
---|
93 | % i1_series(iview,ref_j,ref_i)... are the corresponding arrays of indices i1,i2,j1,j2, depending on the input line iview and the two reference indices ref_i,ref_j |
---|
94 | % i1_series(iview,fileindex) expresses the same indices as a 1D array in file indices |
---|
95 | %%%%%%%%%%%% |
---|
96 | NbSlice=1;%default |
---|
97 | if isfield(Param.IndexRange,'NbSlice')&&~isempty(Param.IndexRange.NbSlice) |
---|
98 | NbSlice=Param.IndexRange.NbSlice; |
---|
99 | end |
---|
100 | nbview=1;%number of input file series (lines in InputTable) |
---|
101 | nbfield_j=size(i1_series{1},1); %nb of fields for the j index (bursts or volume slices) |
---|
102 | nbfield_i=size(i1_series{1},2); %nb of fields for the i index |
---|
103 | nbfield=nbfield_j*nbfield_i; %total number of fields |
---|
104 | nbfield_i=floor(nbfield/NbSlice);%total number of indexes in a slice (adjusted to an integer number of slices) |
---|
105 | nbfield=nbfield_i*NbSlice; %total number of fields after adjustement |
---|
106 | |
---|
107 | %determine the file type on each line from the first input file |
---|
108 | ImageTypeOptions={'image','multimage','mmreader','video'}; |
---|
109 | NcTypeOptions={'netcdf','civx','civdata'}; |
---|
110 | for iview=1:nbview |
---|
111 | if ~exist(filecell{iview,1}','file') |
---|
112 | disp_uvmat('ERROR',['the first input file ' filecell{iview,1} ' does not exist'],checkrun) |
---|
113 | return |
---|
114 | end |
---|
115 | [FileType{iview},FileInfo{iview},MovieObject{iview}]=get_file_type(filecell{iview,1}); |
---|
116 | CheckImage{iview}=~isempty(find(strcmp(FileType{iview},ImageTypeOptions)));% =1 for images |
---|
117 | CheckNc{iview}=~isempty(find(strcmp(FileType{iview},NcTypeOptions)));% =1 for netcdf files |
---|
118 | if ~isempty(j1_series{iview}) |
---|
119 | frame_index{iview}=j1_series{iview}; |
---|
120 | else |
---|
121 | frame_index{iview}=i1_series{iview}; |
---|
122 | end |
---|
123 | end |
---|
124 | |
---|
125 | %% calibration data and timing: read the ImaDoc files |
---|
126 | %none |
---|
127 | |
---|
128 | %% coordinate transform or other user defined transform |
---|
129 | % none |
---|
130 | |
---|
131 | %%%%%%%%%%%% END STANDARD PART %%%%%%%%%%%% |
---|
132 | % EDIT FROM HERE |
---|
133 | |
---|
134 | %% check the validity of ctinput file types |
---|
135 | %none |
---|
136 | |
---|
137 | %% Set field names and velocity types |
---|
138 | InputFields{1}=[];%default (case of images) |
---|
139 | if isfield(Param,'InputFields') |
---|
140 | InputFields{1}=Param.InputFields; |
---|
141 | end |
---|
142 | % only one input fieldseries |
---|
143 | |
---|
144 | %% Initiate output fields |
---|
145 | %initiate the output structure as a copy of the first input one (reproduce fields) |
---|
146 | [DataOut,tild,errormsg] = read_field(filecell{1,1},FileType{1},InputFields{1},1); |
---|
147 | if ~isempty(errormsg) |
---|
148 | disp_uvmat('ERROR',['error reading ' filecell{1,1} ': ' errormsg],checkrun) |
---|
149 | return |
---|
150 | end |
---|
151 | time_1=[]; |
---|
152 | if isfield(DataOut,'Time') |
---|
153 | time_1=DataOut.Time(1); |
---|
154 | end |
---|
155 | if CheckNc{iview} |
---|
156 | if isempty(strcmp('Conventions',DataOut.ListGlobalAttribute)) |
---|
157 | DataOut.ListGlobalAttribute=['Conventions' DataOut.ListGlobalAttribute]; |
---|
158 | end |
---|
159 | DataOut.Conventions='uvmat'; |
---|
160 | DataOut.ListGlobalAttribute=[DataOut.ListGlobalAttribute {Param.Action}]; |
---|
161 | ActionKey='Action'; |
---|
162 | while isfield(DataOut,ActionKey) |
---|
163 | ActionKey=[ActionKey '_1']; |
---|
164 | end |
---|
165 | DataOut.(ActionKey)=Param.Action; |
---|
166 | DataOut.ListGlobalAttribute=[DataOut.ListGlobalAttribute {ActionKey}]; |
---|
167 | if isfield(DataOut,'Time') |
---|
168 | DataOut.ListGlobalAttribute=[DataOut.ListGlobalAttribute {'Time','Time_end'}]; |
---|
169 | end |
---|
170 | end |
---|
171 | |
---|
172 | %%%%%%%%%%%%%%%% loop on field indices %%%%%%%%%%%%%%%% |
---|
173 | index_slice=1:nbfield;% select the file indices |
---|
174 | for index=index_slice |
---|
175 | if checkrun |
---|
176 | update_waitbar(hseries.Waitbar,index/(nbfield)) |
---|
177 | stopstate=get(hseries.RUN,'BusyAction'); |
---|
178 | else |
---|
179 | stopstate='queue'; |
---|
180 | end |
---|
181 | if isequal(stopstate,'queue')% enable STOP command |
---|
182 | Data=cell(1,nbview);%initiate the set Data; |
---|
183 | nbtime=0; |
---|
184 | dt=[]; |
---|
185 | %%%%%%%%%%%%%%%% loop on views (input lines) %%%%%%%%%%%%%%%% |
---|
186 | for iview=1:nbview |
---|
187 | % reading input file(s) |
---|
188 | [Data{iview},tild,errormsg] = read_field(filecell{iview,index},FileType{iview},InputFields{iview},frame_index{iview}(index)); |
---|
189 | if ~isempty(errormsg) |
---|
190 | errormsg=['time_series / read_field / ' errormsg]; |
---|
191 | display(errormsg) |
---|
192 | break |
---|
193 | end |
---|
194 | end |
---|
195 | if isempty(errormsg) |
---|
196 | Field=Data{1}; % default input field structure |
---|
197 | % coordinate transform (or other user defined transform) |
---|
198 | % none |
---|
199 | |
---|
200 | %field projection on an object |
---|
201 | if Param.CheckObject |
---|
202 | [Field,errormsg]=proj_field(Field,Param.ProjObject); |
---|
203 | if ~isempty(errormsg) |
---|
204 | msgbox_uvmat('ERROR',['time_series / proj_field / ' errormsg]) |
---|
205 | return |
---|
206 | end |
---|
207 | end |
---|
208 | |
---|
209 | % initiate the time series at the first iteration |
---|
210 | if index==1 |
---|
211 | % stop program if the first field reading is in error |
---|
212 | if ~isempty(errormsg) |
---|
213 | disp_uvmat('ERROR',['time_series / sub_field / ' errormsg],checkrun) |
---|
214 | return |
---|
215 | end |
---|
216 | DataOut=Field;%default |
---|
217 | DataOut.NbDim=Field.NbDim+1; %add the time dimension for plots |
---|
218 | nbvar=length(Field.ListVarName); |
---|
219 | if nbvar==0 |
---|
220 | disp_uvmat('ERROR','no input variable selected',checkrun) |
---|
221 | return |
---|
222 | end |
---|
223 | testsum=2*ones(1,nbvar);%initiate flag for action on each variable |
---|
224 | if isfield(Field,'VarAttribute') % look for coordinate and flag variables |
---|
225 | for ivar=1:nbvar |
---|
226 | if length(Field.VarAttribute)>=ivar && isfield(Field.VarAttribute{ivar},'Role') |
---|
227 | var_role=Field.VarAttribute{ivar}.Role;%'role' of the variable |
---|
228 | if isequal(var_role,'errorflag') |
---|
229 | disp_uvmat('ERROR','do not handle error flags in time series',checkrun) |
---|
230 | return |
---|
231 | end |
---|
232 | if isequal(var_role,'warnflag') |
---|
233 | testsum(ivar)=0; % not recorded variable |
---|
234 | eval(['DataOut=rmfield(DataOut,''' Field.ListVarName{ivar} ''');']);%remove variable |
---|
235 | end |
---|
236 | if isequal(var_role,'coord_x')| isequal(var_role,'coord_y')|... |
---|
237 | isequal(var_role,'coord_z')|isequal(var_role,'coord') |
---|
238 | testsum(ivar)=1; %constant coordinates, record without time evolution |
---|
239 | end |
---|
240 | end |
---|
241 | % check whether the variable ivar is a dimension variable |
---|
242 | DimCell=Field.VarDimName{ivar}; |
---|
243 | if ischar(DimCell) |
---|
244 | DimCell={DimCell}; |
---|
245 | end |
---|
246 | if numel(DimCell)==1 && isequal(Field.ListVarName{ivar},DimCell{1})%detect dimension variables |
---|
247 | testsum(ivar)=1; |
---|
248 | end |
---|
249 | end |
---|
250 | end |
---|
251 | for ivar=1:nbvar |
---|
252 | if testsum(ivar)==2 |
---|
253 | eval(['DataOut.' Field.ListVarName{ivar} '=[];']) |
---|
254 | end |
---|
255 | end |
---|
256 | DataOut.ListVarName=[{'Time'} DataOut.ListVarName]; |
---|
257 | end |
---|
258 | |
---|
259 | % add data to the current field |
---|
260 | for ivar=1:length(Field.ListVarName) |
---|
261 | VarName=Field.ListVarName{ivar}; |
---|
262 | VarVal=Field.(VarName); |
---|
263 | if testsum(ivar)==2% test for recorded variable |
---|
264 | if isempty(errormsg) |
---|
265 | if isequal(Param.ProjObject.ProjMode,'inside')% take the average in the domain for 'inside' mode |
---|
266 | if isempty(VarVal) |
---|
267 | disp_uvmat('ERROR',['empty result at frame index ' num2str(i1_series{iview}(index))],checkrun) |
---|
268 | return |
---|
269 | end |
---|
270 | VarVal=mean(VarVal,1); |
---|
271 | end |
---|
272 | VarVal=shiftdim(VarVal,-1); %shift dimension |
---|
273 | DataOut.(VarName)=cat(1,DataOut.(VarName),VarVal);%concanete the current field to the time series |
---|
274 | else |
---|
275 | DataOut.(VarName)=cat(1,DataOut.(VarName),0);% put each variable to 0 in case of input reading error |
---|
276 | end |
---|
277 | elseif testsum(ivar)==1% variable representing fixed coordinates |
---|
278 | VarInit=DataOut.(VarName); |
---|
279 | if isempty(errormsg) && ~isequal(VarVal,VarInit) |
---|
280 | disp_uvmat('ERROR',['time series requires constant coordinates ' VarName],checkrun) |
---|
281 | return |
---|
282 | end |
---|
283 | end |
---|
284 | end |
---|
285 | |
---|
286 | end |
---|
287 | end |
---|
288 | end |
---|
289 | %%%%%%% END OF LOOP WITHIN A SLICE |
---|
290 | |
---|
291 | %remove time for global attributes if exists |
---|
292 | Time_index=find(strcmp('Time',DataOut.ListGlobalAttribute)); |
---|
293 | if ~isempty(Time_index) |
---|
294 | DataOut.ListGlobalAttribute(Time_index)=[]; |
---|
295 | end |
---|
296 | DataOut.Conventions='uvmat'; |
---|
297 | for ivar=1:numel(DataOut.ListVarName) |
---|
298 | VarName=DataOut.ListVarName{ivar}; |
---|
299 | eval(['DataOut.' VarName '=squeeze(DataOut.' VarName ');']) %remove singletons |
---|
300 | end |
---|
301 | |
---|
302 | % add time dimension |
---|
303 | for ivar=1:length(Field.ListVarName) |
---|
304 | DimCell=Field.VarDimName(ivar); |
---|
305 | if testsum(ivar)==2%variable used as time series |
---|
306 | DataOut.VarDimName{ivar}=[{'Time'} DimCell]; |
---|
307 | elseif testsum(ivar)==1 |
---|
308 | DataOut.VarDimName{ivar}=DimCell; |
---|
309 | end |
---|
310 | end |
---|
311 | indexremove=find(~testsum); |
---|
312 | if ~isempty(indexremove) |
---|
313 | DataOut.ListVarName(1+indexremove)=[]; |
---|
314 | DataOut.VarDimName(indexremove)=[]; |
---|
315 | if isfield(DataOut,'Role') && ~isempty(DataOut.Role{1})%generaliser aus autres attributs |
---|
316 | DataOut.Role(1+indexremove)=[]; |
---|
317 | end |
---|
318 | end |
---|
319 | |
---|
320 | %shift variable attributes |
---|
321 | if isfield(DataOut,'VarAttribute') |
---|
322 | DataOut.VarAttribute=[{[]} DataOut.VarAttribute]; |
---|
323 | end |
---|
324 | DataOut.VarDimName=[{'Time'} DataOut.VarDimName]; |
---|
325 | DataOut.Action=Param.Action;%name of the processing programme |
---|
326 | test_time=diff(DataOut.Time)>0;% test that the readed time is increasing (not constant) |
---|
327 | if ~test_time |
---|
328 | DataOut.Time=1:filecounter; |
---|
329 | end |
---|
330 | |
---|
331 | % display nbmissing |
---|
332 | if ~isequal(nbmissing,0) |
---|
333 | disp_uvmat('WARNING',[num2str(nbmissing) ' files skipped: missing files or bad input, see command window display'],checkrun) |
---|
334 | end |
---|
335 | |
---|
336 | %name of result file |
---|
337 | OutputFile=fullfile_uvmat(RootPath{1},OutputDir,RootFile{1},FileExtOut,NomTypeOut,i1_series{1}(1),i1_series{1}(end),i_slice,[]); |
---|
338 | errormsg=struct2nc(OutputFile,DataOut); %save result file |
---|
339 | if isempty(errormsg) |
---|
340 | display([OutputFile ' written']) |
---|
341 | else |
---|
342 | disp_uvmat('ERROR',['error in Series/struct2nc: ' errormsg],checkrun) |
---|
343 | end |
---|
344 | |
---|
345 | return |
---|
346 | |
---|
347 | %%%%%%%%%%%%%%%%%% END%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
348 | %evaluation of peacklocking errors |
---|
349 | %use splinhist: give spline coeff cc for a smooth histo (call spline4) |
---|
350 | %use histsmooth(x,cc): calculate the smooth histo for any value x |
---|
351 | %use histder(x,cc): calculate the derivative of the smooth histo |
---|
352 | global hfig1 hfig2 hfig3 |
---|
353 | global nbb Uval Vval Uhist Vhist % nbb resolution of the histogram nbb=10: 10 values in unity interval |
---|
354 | global xval xerror yval yerror |
---|
355 | |
---|
356 | set(handles.vector_y,'Value',1)% trigger the option Uhist on the interface |
---|
357 | set(handles.Vhist_input,'Value',1) |
---|
358 | set(handles.cm_switch,'Value',0) % put the switch to 'pixel' |
---|
359 | |
---|
360 | %adjust the extremal values of the histogram in U with respect to integer |
---|
361 | %values |
---|
362 | minimU=round(min(Uval)-0.5)+0.5; %first value of the histogram with integer bins |
---|
363 | maximU=round(max(Uval)-0.5)+0.5; |
---|
364 | minim_fin=(minimU-0.5+1/(2*nbb)); % first bin valueat the beginning of an integer interval |
---|
365 | maxim_fin=(maximU+0.5-1/(2*nbb)); % last integer value |
---|
366 | nb_bin_min= round(-(minim_fin - min(Uval))*nbb); % nbre of bins added below |
---|
367 | nb_bin_max=round((maxim_fin -max(Uval))*nbb); %nbre of bins added above |
---|
368 | Uval=[minim_fin:(1/nbb):maxim_fin]; |
---|
369 | histu_min=zeros(nb_bin_min,1); |
---|
370 | histu_max=zeros(nb_bin_max,1); |
---|
371 | Uhist=[histu_min; Uhist ;histu_max]; % column vector |
---|
372 | |
---|
373 | %adjust the extremal values of the histogram in V |
---|
374 | minimV=round(min(Vval-0.5)+0.5); |
---|
375 | maximV=round(max(Vval-0.5)+0.5); |
---|
376 | minim_fin=minimV-0.5+1/(2*nbb); % first bin valueat the beginning of an integer interval |
---|
377 | maxim_fin=maximV+0.5-1/(2*nbb); % last integer value |
---|
378 | nb_bin_min=round((min(Vval) - minim_fin)*nbb); % nbre of bins added below |
---|
379 | nb_bin_max=round((maxim_fin -max(Vval))*nbb); |
---|
380 | Vval=[minim_fin:(1/nbb):maxim_fin]; |
---|
381 | histu_min=zeros(nb_bin_min,1); |
---|
382 | histu_max=zeros(nb_bin_max,1); |
---|
383 | Vhist=[histu_min; Vhist ;histu_max]; % column vector |
---|
384 | |
---|
385 | % RUN_histo_Callback(hObject, eventdata, handles) |
---|
386 | % %adjust the histogram to integer values: |
---|
387 | |
---|
388 | %histoU and V |
---|
389 | [Uhistinter,xval,xerror]=peaklock(nbb,minimU,maximU,Uhist); |
---|
390 | [Vhistinter,yval,yerror]=peaklock(nbb,minimV,maximV,Vhist); |
---|
391 | |
---|
392 | % selection of value ranges such that histo>=10 (enough statistics) |
---|
393 | Uval_ind=find(Uhist>=10); |
---|
394 | ind_min=min(Uval_ind); |
---|
395 | ind_max=max(Uval_ind); |
---|
396 | U_min=Uval(ind_min);% minimum allowed value |
---|
397 | U_max=Uval(ind_max);%maximum allowed value |
---|
398 | |
---|
399 | % selection of value ranges such that histo>=10 (enough statistics) |
---|
400 | Vval_ind=find(Vhist>=10); |
---|
401 | ind_min=min(Vval_ind); |
---|
402 | ind_max=max(Vval_ind); |
---|
403 | V_min=Vval(ind_min);% minimum allowed value |
---|
404 | V_max=Vval(ind_max);%maximum allowed value |
---|
405 | |
---|
406 | figure(4)% plot U histogram with smoothed one |
---|
407 | plot(Uval,Uhist,'b') |
---|
408 | grid on |
---|
409 | hold on |
---|
410 | plot(Uval,Uhistinter,'r'); |
---|
411 | hold off |
---|
412 | |
---|
413 | figure(5)% plot V histogram with smoothed one |
---|
414 | plot(Vval,Vhist,'b') |
---|
415 | grid on |
---|
416 | hold on |
---|
417 | plot(Vval,Vhistinter,'r'); |
---|
418 | hold off |
---|
419 | |
---|
420 | figure(6)% plot pixel error in two subplots |
---|
421 | hfig4=subplot(2,1,1); |
---|
422 | hfig5=subplot(2,1,2); |
---|
423 | axes(hfig4) |
---|
424 | plot(xval,xerror) |
---|
425 | axis([U_min U_max -0.4 0.4]) |
---|
426 | xlabel('velocity u (pix)') |
---|
427 | ylabel('peaklocking error (pix)') |
---|
428 | grid on |
---|
429 | axes(hfig5) |
---|
430 | plot(yval,yerror) |
---|
431 | axis([V_min V_max -0.4 0.4]); |
---|
432 | xlabel('velocity v (pix)') |
---|
433 | ylabel('peaklocking error (pix)') |
---|
434 | grid on |
---|
435 | |
---|
436 | |
---|
437 | |
---|
438 | |
---|
439 | |
---|
440 | |
---|
441 | |
---|
442 | |
---|
443 | |
---|
444 | %'peaklock': determines peacklocking errors from velocity histograms. |
---|
445 | %------------------------------------------------------- |
---|
446 | %first smooth the input histogram 'histu' in such a way that the integral over |
---|
447 | %n-n+1 is preserved, then deduce the peaklocking 'error' function of the pixcel displacement 'x'. |
---|
448 | % |
---|
449 | % [histinter,x,error]=peaklock(nbb,minim,maxim,histu) |
---|
450 | %OUTPUT: |
---|
451 | %histinter: smoothed interpolated histogram |
---|
452 | % x: vector of displacement values. |
---|
453 | % error: vector of estimated errors corresponding to x |
---|
454 | %INPUT: |
---|
455 | %histu=vector representing the values of histogram of measured velocity ; |
---|
456 | %minim, maxim: extremal values of the measured velocity (absica for histu) |
---|
457 | %nbb: number of bins inside each integer interval for the histograms |
---|
458 | %SUBROUTINES INCLUDED: |
---|
459 | %spline4.m% spline interpolation at 4th order |
---|
460 | %splinhist.m: give spline coeff cc for a smooth histo (call spline4) |
---|
461 | %histsmooth.m(x,cc): calculate the smooth histo for any value x |
---|
462 | %histder.m(x,cc): calculate the derivative of the smooth histo |
---|
463 | function [histinter,x,error]=peaklock(nbb,minim,maxim,histu) |
---|
464 | |
---|
465 | nint=maxim-minim+1 |
---|
466 | xfin=[minim-0.5+1/(2*nbb):(1/nbb):maxim+0.5-(1/(2*nbb))]; |
---|
467 | histo=(reshape(histu,nbb,nint));%extract values with x between integer -1/2 integer +1/2 |
---|
468 | Integ=sum(histo)/nbb; %integral of the pdf on each integer bin |
---|
469 | [histinter,cc]=splinhist(Integ,minim,nbb); |
---|
470 | histx=reshape(histinter,nbb,nint); |
---|
471 | xint=[minim:1:maxim]; |
---|
472 | x=zeros(nbb,nint); |
---|
473 | %determination of the displacement x(j,:) |
---|
474 | %j=1 |
---|
475 | delx=histo(1,:)./histsmooth(-0.5*ones(1,nint),cc)/nbb; |
---|
476 | %del(1,:)=delx; |
---|
477 | x(1,:)=-0.5+delx-(delx.*delx/2).*histder(-0.5*ones(1,nint),cc); |
---|
478 | %histx(1,:)=histsmooth(x(j-1,:),cc); |
---|
479 | for j=2:nbb |
---|
480 | delx=histo(j,:)./histsmooth(x(j-1,:),cc)/nbb; |
---|
481 | %delx=delx.*(delx<3*ones(1,nint)/nbb)+3*ones(1,nint)/nbb.*~(delx <3*ones(1,nint)/nbb) |
---|
482 | x(j,:)=x(j-1,:)+delx-(delx.*delx/2).*histder(x(j-1,:),cc); |
---|
483 | end |
---|
484 | %reshape |
---|
485 | xint=ones(nbb,1)*xint; |
---|
486 | x=x+xint; |
---|
487 | x=reshape(x,1,nbb*nint); |
---|
488 | error=xfin+1/(2*nbb)-x; |
---|
489 | |
---|
490 | %------------------------------------------------------- |
---|
491 | % --- determine the spline coefficients cc for the interpolated histogram. |
---|
492 | %------------------------------------------------- |
---|
493 | function [histsmooth,cc]= splinhist(Integ,mini,nbb) |
---|
494 | % provides a smooth histogramm histmooth, which remains always positive, |
---|
495 | % and is such that its sum over each integer bin [i-1/2 i+1/2] is equal to |
---|
496 | % Integ(i). The function determines histmooth as the exponential of a 4th |
---|
497 | % order spline function and adjust the cefficients by a Newton method to |
---|
498 | % fit the integral conditions Integ |
---|
499 | % histmooth is determined at the abscissa |
---|
500 | % xfin=[mini-0.5+1/(2*n):(1/n):maxi+0.5-(1/(2*n))] (maxi=mini+size(aa)-1) |
---|
501 | %cc(1-5,i) provides the spline coefficients |
---|
502 | |
---|
503 | % order 0 |
---|
504 | siz=size(Integ); |
---|
505 | nint=siz(2); |
---|
506 | izero=find(Integ==0); %indices of zero elements |
---|
507 | inonzero=find(Integ); |
---|
508 | Integ(izero)=min(Integ(inonzero)); |
---|
509 | aa=log(Integ);%initial guess for a coeff |
---|
510 | spli=spline4(aa,mini,nbb); %appel à la fonction spline4 |
---|
511 | histsmooth=exp(spli); |
---|
512 | |
---|
513 | S=(sum(reshape(histsmooth,nbb,nint)))/nbb;% integral of the fit histsmooth on ]i-1/2 i+1/2[ |
---|
514 | epsilon=max(abs(Integ-S)); |
---|
515 | iter=0; |
---|
516 | while epsilon > 0.000001 & iter<10 |
---|
517 | ident=eye(nint); |
---|
518 | dSda=ones(nint); |
---|
519 | for j=1:nint% determination of the jacobian matrix dSda |
---|
520 | dhistda=spline4(ident(j,:),mini,nbb); |
---|
521 | expdhistda=dhistda.*histsmooth; |
---|
522 | dSda(j,:)=(sum(reshape(expdhistda,nbb,nint)))/nbb; |
---|
523 | end |
---|
524 | aa=aa+(Integ-S)*inv(dSda);%new estimate of coefficients aa by linear interpolation |
---|
525 | [spli,bb]=spline4(aa,mini,nbb);% new fit histsmooth |
---|
526 | histsmooth=exp(spli); |
---|
527 | S=(sum(reshape(histsmooth,nbb,nint)))/nbb;% integral of the fit histsmooth on ]i-1/2 i+1/2[ |
---|
528 | epsilon=max(abs(Integ-S)); |
---|
529 | iter=iter+1; |
---|
530 | end |
---|
531 | if iter==10, errordlg('splinhist did not converge after 10 iterations'),end |
---|
532 | cc(1,:)=aa; |
---|
533 | cc(2,:)=bb(1,:); |
---|
534 | cc(3,:)=bb(2,:); |
---|
535 | cc(4,:)=bb(3,:); |
---|
536 | cc(5,:)=bb(4,:); |
---|
537 | |
---|
538 | %------------------------------------------------------- |
---|
539 | % --- determine the 4th order spline coefficients from the function values aa. |
---|
540 | %------------------------------------------------- |
---|
541 | function [histsmooth,bb]= spline4(aa,mini,n) |
---|
542 | % spline interpolation at 4th order |
---|
543 | %aa=vector of values of a function at integer abscissa, starting at mini |
---|
544 | %n=number of subdivisions for the interpolated function |
---|
545 | % histmooth =interpolated values at absissa |
---|
546 | % xfin=[mini-0.5+1/(2*n):(1/n):maxi+0.5-(1/(2*n))] (maxi=mini+size(aa)-1) |
---|
547 | %bb=[b(i);c(i);d(i); e(i)] matrix of spline coeff |
---|
548 | L1=[1/2 1/4 1/8 1/16;1 1 3/4 1/2;0 2 3 3;0 0 6 12]; |
---|
549 | L2=[-1/2 1/4 -1/8 1/16;1 -1 3/4 -1/2;0 2 -3 3;0 0 6 -12]; |
---|
550 | M=inv(L2)*L1; |
---|
551 | [V,D]=eig(M); |
---|
552 | F=-inv(V)*inv(L2)*[1 ;0 ;0;0]; |
---|
553 | a1rev=[1 -1/D(1,1)]; |
---|
554 | b1rev=[F(1)/D(1,1)]; |
---|
555 | a2rev=[1 -1/D(2,2)]; |
---|
556 | b2rev=[F(2)/D(2,2)]; |
---|
557 | a3=[1 -D(3,3)]; |
---|
558 | b3=[F(3)]; |
---|
559 | a4=[1 -D(4,4)]; |
---|
560 | b4=[F(4)]; |
---|
561 | |
---|
562 | %data |
---|
563 | % n=10;% résolution de la pdf: nbre de points par unite de u |
---|
564 | % mini=-10.0;%general mini=uint16(min(values)-1 CHOOSE maxi-mini+1 EVEN |
---|
565 | % maxi=9.0; % general maxi=uint16(max(values))+1 |
---|
566 | %nint=double(maxi-mini+1); % nombre d'intervals entiers EVEN! |
---|
567 | siz=size(aa); |
---|
568 | nint=siz(2); |
---|
569 | maxi=mini+nint-1; |
---|
570 | npdf=nint*n;% nbre total d'intervals à introduire dans la pdf: hist(u,npdf) |
---|
571 | %simulation de pdf |
---|
572 | xfin=[mini-0.5+1/(2*n):(1/n):maxi+0.5-(1/(2*n))];% valeurs d'interpolation: we take n values in each integer interval |
---|
573 | %histolin=exp(-(xfin-1).*(xfin-1)).*(2+cos(10*(xfin-1)));% simulation d'une pdf |
---|
574 | %histo=log(histolin); |
---|
575 | %histo=sin(2*pi*xfin); |
---|
576 | %histextract=(reshape(histo,n,nint)); |
---|
577 | %aa=sum(histextract)/n %integral of the pdf on each integer bin |
---|
578 | IP=[0 diff(aa)]; |
---|
579 | Irev=zeros(size(aa)); |
---|
580 | for i=1:nint |
---|
581 | Irev(i)=aa(end-i+1); |
---|
582 | end |
---|
583 | IPrev=[0 diff(Irev)]; |
---|
584 | |
---|
585 | %get the spline coelfficients a_d, using filter on the eigen vectors A,B,C |
---|
586 | Arev=filter(b1rev,a1rev,IPrev); |
---|
587 | Brev=filter(b2rev,a2rev,IPrev); |
---|
588 | C=filter(b3,a3,IP); |
---|
589 | D=filter(b4,a4,IP); |
---|
590 | A=zeros(size(Arev)); |
---|
591 | B=zeros(size(Brev)); |
---|
592 | for i=1:nint |
---|
593 | A(i)=Arev(end-i+1); |
---|
594 | B(i)=Brev(end-i+1); |
---|
595 | end |
---|
596 | %Matr=V*[A;B;C;D]; |
---|
597 | bb=V*[A;B;C;D]; |
---|
598 | %b=Matr(1,:); |
---|
599 | %c=Matr(2,:); |
---|
600 | %d=Matr(3,:); |
---|
601 | %e=Matr(4,:); |
---|
602 | %a=aa; |
---|
603 | |
---|
604 | %calculate the interpolation using the spline coefficients a-d |
---|
605 | %xextract=(reshape(xfin,n,nint));% |
---|
606 | chi=xfin+1/(2*n)-min(xfin)-double(int16(xfin+(1/(2*n))-min(xfin)))-0.5;% decimal part |
---|
607 | chi2=chi.*chi; |
---|
608 | chi3=chi2.*chi; |
---|
609 | chi4=chi3.*chi; |
---|
610 | avec=reshape(ones(n,1)*aa,1,n*nint); |
---|
611 | bvec=reshape(ones(n,1)*bb(1,:),1,n*nint); |
---|
612 | cvec=reshape(ones(n,1)*bb(2,:),1,n*nint); |
---|
613 | dvec=reshape(ones(n,1)*bb(3,:),1,n*nint); |
---|
614 | evec=reshape(ones(n,1)*bb(4,:),1,n*nint); |
---|
615 | histsmooth=avec+bvec.*chi+cvec.*chi2+dvec.*chi3+evec.*chi4; |
---|
616 | |
---|
617 | %------------------------------------------------------- |
---|
618 | % --- determine the interpolated histogram at points chi from the spline ceff cc. |
---|
619 | %------------------------------------------------- |
---|
620 | function histx= histsmooth(chi,cc) |
---|
621 | % provides the value of the interpolated histogram at values chi=x-i |
---|
622 | %(difference with the mnearest integer) |
---|
623 | % cc(5,size(chi)) is the set of spline coefficients obtained by splinhist |
---|
624 | chi2=chi.*chi; |
---|
625 | chi3=chi2.*chi; |
---|
626 | chi4=chi3.*chi; |
---|
627 | histx=exp(cc(1,:)+cc(2,:).*chi+cc(3,:).*chi2+cc(4,:).*chi3+cc(5,:).*chi4); |
---|
628 | |
---|
629 | %------------------------------------------------------- |
---|
630 | % --- determine the derivative p'/p of the interpolated histogram at points chi from the spline ceff cc. |
---|
631 | %------------------------------------------------- |
---|
632 | function histder= histder(chi,cc) |
---|
633 | % provides the logarithmique derivative p'/p of the interpolated histogram |
---|
634 | %at values chi=x-i |
---|
635 | %(difference with the nearest integer) |
---|
636 | % cc(5,size(chi)) is the set of spline coefficients obtained by splinhist |
---|
637 | chi2=chi.*chi; |
---|
638 | chi3=chi2.*chi; |
---|
639 | chi4=chi3.*chi; |
---|
640 | histder=cc(2,:)+2*cc(3,:).*chi+3*cc(4,:).*chi2+4*cc(5,:).*chi3; |
---|