1 | %'civ2vel_3C': combine velocity fields from two cameras to get the three velocity components
|
---|
2 | % used with the GUI 'series':
|
---|
3 | % first input line =raw PIV camera 1 (image coordinates)
|
---|
4 | % second input line=raw PIV camera 2 (image coordinates)
|
---|
5 | % Three modes:
|
---|
6 | % 1) no additional input: measurements assumed in the reference plane (laser sheet)
|
---|
7 | % 2) measurement surface obtained by stereoscopic comparison of the images of the two cameras.
|
---|
8 | % third input line =surface z(x,y) given by correlation between camera 1 and 2 (expressed in phys apparent coordinates)
|
---|
9 | % 3) surface z(x,y) given by adding the displacements of each camera with a third intermediate camera (#3) used to reduce the
|
---|
10 | % to reduce the angle for stereoscopic view.
|
---|
11 | % third input line =correlation between camera 1 and 3 (expressed in phys apparent coordinates)
|
---|
12 | % fourth input line =corelation between camera 2 and 3 (expressed in phys apparent coordinates)
|
---|
13 | %
|
---|
14 | %------------------------------------------------------------------------
|
---|
15 | % function ParamOut=civ2vel_3C(Param)
|
---|
16 | %
|
---|
17 | %OUTPUT
|
---|
18 | % ParamOut: sets options in the GUI series.fig needed for the function
|
---|
19 | %
|
---|
20 | %INPUT:
|
---|
21 | %
|
---|
22 | % In run mode, the input parameters are given as a Matlab structure Param copied from the GUI series.
|
---|
23 | % In batch mode, Param is the name of the corresponding xml file containing the same information
|
---|
24 | % when Param.Action.RUN=0 (as activated when the current Action is selected
|
---|
25 | % in series), the function ouput paramOut set the activation of the needed GUI elements
|
---|
26 | %
|
---|
27 | % Param contains the elements:(use the menu bar command 'export/GUI config' in series to
|
---|
28 | % see the current structure Param)
|
---|
29 | % .InputTable: cell of input file names, (several lines for multiple input)
|
---|
30 | % each line decomposed as {RootPath,SubDir,Rootfile,NomType,Extension}.
|
---|
31 | % 3 or 4 lines used as described above
|
---|
32 | % .OutputSubDir: name of the subdirectory for data outputs
|
---|
33 | % .OutputDirExt: directory extension for data outputs
|
---|
34 | % .Action: .ActionName: name of the current activated function
|
---|
35 | % .ActionPath: path of the current activated function
|
---|
36 | % .ActionExt: fct extension ('.m', Matlab fct, '.sh', compiled Matlab fct
|
---|
37 | % .RUN =0 for GUI input, =1 for function activation
|
---|
38 | % .RunMode='local','background', 'cluster': type of function use
|
---|
39 | % .IndexRange: set the file or frame indices on which the action must be performed
|
---|
40 | % .InputFields: sub structure describing the input fields withfields
|
---|
41 | % .FieldName: name(s) of the field
|
---|
42 | % .VelType: velocity type
|
---|
43 | % .FieldName_1: name of the second field in case of two input series
|
---|
44 | % .VelType_1: velocity type of the second field in case of two input series
|
---|
45 | % .Coord_y: name of y coordinate variable
|
---|
46 | % .Coord_x: name of x coordinate variable'
|
---|
47 |
|
---|
48 | %=======================================================================
|
---|
49 | % Copyright 2008-2016, LEGI UMR 5519 / CNRS UGA G-INP, Grenoble, France
|
---|
50 | % http://www.legi.grenoble-inp.fr
|
---|
51 | % Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr
|
---|
52 | %
|
---|
53 | % This file is part of the toolbox UVMAT.
|
---|
54 | %
|
---|
55 | % UVMAT is free software; you can redistribute it and/or modify
|
---|
56 | % it under the terms of the GNU General Public License as published
|
---|
57 | % by the Free Software Foundation; either version 2 of the license,
|
---|
58 | % or (at your option) any later version.
|
---|
59 | %
|
---|
60 | % UVMAT is distributed in the hope that it will be useful,
|
---|
61 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
62 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
63 | % GNU General Public License (see LICENSE.txt) for more details.
|
---|
64 | %=======================================================================
|
---|
65 |
|
---|
66 | function ParamOut=civ2vel_3C(Param)
|
---|
67 |
|
---|
68 | %% set the input elements needed on the GUI series when the function is selected in the menu ActionName or InputTable refreshed
|
---|
69 | if isstruct(Param) && isequal(Param.Action.RUN,0)
|
---|
70 | ParamOut.AllowInputSort='off';% allow alphabetic sorting of the list of input file SubDir (options 'off'/'on', 'off' by default)
|
---|
71 | ParamOut.WholeIndexRange='off';% prescribes the file index ranges from min to max (options 'off'/'on', 'off' by default)
|
---|
72 | ParamOut.NbSlice='off'; %nbre of slices ('off' by default)
|
---|
73 | ParamOut.VelType='one';% menu for selecting the velocity type (options 'off'/'one'/'two', 'off' by default)
|
---|
74 | ParamOut.FieldName='off';% menu for selecting the field (s) in the input file(options 'off'/'one'/'two', 'off' by default)
|
---|
75 | ParamOut.FieldTransform = 'off';%use the phys transform function without choice
|
---|
76 | %ParamOut.TransformPath=fullfile(fileparts(which('uvmat')),'transform_field');% path to transform functions (needed for compilation only)
|
---|
77 | ParamOut.ProjObject='on';%can use projection object(option 'off'/'on',
|
---|
78 | ParamOut.Mask='off';%can use mask option (option 'off'/'on', 'off' by default)
|
---|
79 | ParamOut.OutputDirExt='.vel3C';%set the output dir extension
|
---|
80 | ParamOut.OutputSubDirMode='two'; % the two first input lines are used to define the output subfolder
|
---|
81 | ParamOut.OutputFileMode='NbInput';% '=NbInput': 1 output file per input file index, '=NbInput_i': 1 file per input file index i, '=NbSlice': 1 file per slice
|
---|
82 | %check the input files
|
---|
83 | ParamOut.CheckOverwriteVisible='on'; % manage the overwrite of existing files (default=1)
|
---|
84 | first_j=[];
|
---|
85 | if size(Param.InputTable,1)<2
|
---|
86 | msgbox_uvmat('WARNING',['two or three input file series are needed'])
|
---|
87 | end
|
---|
88 | if isfield(Param.IndexRange,'first_j'); first_j=Param.IndexRange.first_j; end
|
---|
89 | PairString='';
|
---|
90 | if isfield(Param.IndexRange,'PairString'); PairString=Param.IndexRange.PairString; end
|
---|
91 | [i1,i2,j1,j2] = get_file_index(Param.IndexRange.first_i,first_j,PairString);
|
---|
92 | FirstFileName=fullfile_uvmat(Param.InputTable{1,1},Param.InputTable{1,2},Param.InputTable{1,3},...
|
---|
93 | Param.InputTable{1,5},Param.InputTable{1,4},i1,i2,j1,j2);
|
---|
94 | if ~exist(FirstFileName,'file')
|
---|
95 | msgbox_uvmat('WARNING',['the first input file ' FirstFileName ' does not exist'])
|
---|
96 | elseif isequal(size(Param.InputTable,1),1) && ~isfield(Param,'ProjObject')
|
---|
97 | msgbox_uvmat('WARNING','You may need a projection object of type plane for merge_proj')
|
---|
98 | end
|
---|
99 | return
|
---|
100 | end
|
---|
101 |
|
---|
102 | %%%%%%%%%%%% STANDARD PART (DO NOT EDIT) %%%%%%%%%%%%
|
---|
103 | ParamOut=[]; %default output
|
---|
104 | %% read input parameters from an xml file if input is a file name (batch mode)
|
---|
105 | checkrun=1;
|
---|
106 | if ischar(Param)
|
---|
107 | Param=xml2struct(Param);% read Param as input file (batch case)
|
---|
108 | checkrun=0;
|
---|
109 | end
|
---|
110 | hseries=findobj(allchild(0),'Tag','series');
|
---|
111 | RUNHandle=findobj(hseries,'Tag','RUN');%handle of RUN button in GUI series
|
---|
112 | WaitbarHandle=findobj(hseries,'Tag','Waitbar');%handle of waitbar in GUI series
|
---|
113 |
|
---|
114 |
|
---|
115 | %% root input file(s) name, type and index series
|
---|
116 | RootPath=Param.InputTable(:,1);
|
---|
117 | RootFile=Param.InputTable(:,3);
|
---|
118 | SubDir=Param.InputTable(:,2);
|
---|
119 | NomType=Param.InputTable(:,4);
|
---|
120 | FileExt=Param.InputTable(:,5);
|
---|
121 | hdisp=disp_uvmat('WAITING...','checking the file series',checkrun);
|
---|
122 | [filecell,i1_series,i2_series,j1_series,j2_series]=get_file_series(Param);
|
---|
123 | if ~isempty(hdisp),delete(hdisp),end;
|
---|
124 | %%%%%%%%%%%%
|
---|
125 | % The cell array filecell is the list of input file names, while
|
---|
126 | % filecell{iview,fileindex}:
|
---|
127 | % iview: line in the table corresponding to a given file series
|
---|
128 | % fileindex: file index within the file series,
|
---|
129 | % i1_series(iview,ref_j,ref_i)... are the corresponding arrays of indices i1,i2,j1,j2, depending on the input line iview and the two reference indices ref_i,ref_j
|
---|
130 | % i1_series(iview,fileindex) expresses the same indices as a 1D array in file indices
|
---|
131 | %%%%%%%%%%%%
|
---|
132 | NbView=numel(i1_series);%number of input file series (lines in InputTable)
|
---|
133 | NbField_j=size(i1_series{1},1); %nb of fields for the j index (bursts or volume slices)
|
---|
134 | NbField_i=size(i1_series{1},2); %nb of fields for the i index
|
---|
135 | NbField=NbField_j*NbField_i; %total number of fields
|
---|
136 |
|
---|
137 | %% define the directory for result file (with path=RootPath{1})
|
---|
138 | OutputDir=[Param.OutputSubDir Param.OutputDirExt];% subdirectory for output files
|
---|
139 |
|
---|
140 | %% calibration data and timing: read the ImaDoc files
|
---|
141 | [XmlData,NbSlice_calib,time,errormsg]=read_multimadoc(RootPath,SubDir,RootFile,FileExt,i1_series,i2_series,j1_series,j2_series);
|
---|
142 | if size(time,1)>1
|
---|
143 | diff_time=max(max(diff(time)));
|
---|
144 | if diff_time>0
|
---|
145 | disp_uvmat('WARNING',['times of series differ by (max) ' num2str(diff_time) ': the mean time is chosen in result'],checkrun)
|
---|
146 | end
|
---|
147 | end
|
---|
148 | if ~isempty(errormsg)
|
---|
149 | disp_uvmat('WARNING',errormsg,checkrun)
|
---|
150 | end
|
---|
151 | time=mean(time,1); %averaged time taken for the merged field
|
---|
152 | if isfield(XmlData{1},'GeometryCalib')
|
---|
153 | tsaiA=XmlData{1}.GeometryCalib;
|
---|
154 | else
|
---|
155 | disp_uvmat('ERROR','no geometric calibration available for image A',checkrun)
|
---|
156 | return
|
---|
157 | end
|
---|
158 | if isfield(XmlData{2},'GeometryCalib')
|
---|
159 | tsaiB=XmlData{2}.GeometryCalib;
|
---|
160 | else
|
---|
161 | disp_uvmat('ERROR','no geometric calibration available for image B',checkrun)
|
---|
162 | return
|
---|
163 | end
|
---|
164 | [filecell,i1_series,i2_series,j1_series,j2_series]=get_file_series(Param);
|
---|
165 |
|
---|
166 | %% grid of physical positions (given by projection plane)
|
---|
167 | if ~Param.CheckObject
|
---|
168 | disp_uvmat('ERROR','a projection plane with interpolation is needed',checkrun)
|
---|
169 | return
|
---|
170 | end
|
---|
171 | ObjectData=Param.ProjObject;% Object attached to the GUI series
|
---|
172 | xI=ObjectData.RangeX(1):ObjectData.DX:ObjectData.RangeX(2);
|
---|
173 | yI=ObjectData.RangeY(1):ObjectData.DY:ObjectData.RangeY(2);
|
---|
174 | [XI,YI]=meshgrid(xI,yI);
|
---|
175 | U=zeros(size(XI,1),size(XI,2));
|
---|
176 | V=zeros(size(XI,1),size(XI,2));
|
---|
177 | W=zeros(size(XI,1),size(XI,2));
|
---|
178 |
|
---|
179 | %%%% MAIN LOOP ON FIELDS %%%%%
|
---|
180 | warning off
|
---|
181 |
|
---|
182 | CheckOverwrite=1;%default
|
---|
183 | if isfield(Param,'CheckOverwrite')
|
---|
184 | CheckOverwrite=Param.CheckOverwrite;
|
---|
185 | end
|
---|
186 | for field_index=1:NbField
|
---|
187 |
|
---|
188 | update_waitbar(WaitbarHandle,field_index/NbField)% waitbar to visualise progress (in RUN mode)
|
---|
189 |
|
---|
190 | %% generating the name of the output file for the merged field
|
---|
191 | i1=i1_series{1}(field_index);
|
---|
192 | if ~isempty(i2_series{end})
|
---|
193 | i2=i2_series{end}(field_index);
|
---|
194 | else
|
---|
195 | i2=i1;
|
---|
196 | end
|
---|
197 | j1=1;
|
---|
198 | j2=1;
|
---|
199 | if ~isempty(j1_series{1})
|
---|
200 | j1=j1_series{1}(field_index);
|
---|
201 | if ~isempty(j2_series{end})
|
---|
202 | j2=j2_series{end}(field_index);
|
---|
203 | else
|
---|
204 | j2=j1;
|
---|
205 | end
|
---|
206 | end
|
---|
207 | OutputFile=fullfile_uvmat(RootPath{1},OutputDir,RootFile{1},'.nc','_1-2',i1,i2,j1,j2);
|
---|
208 |
|
---|
209 | %% program stop if requested on the GUI
|
---|
210 | if ~isempty(RUNHandle) && ~strcmp(get(RUNHandle,'BusyAction'),'queue')
|
---|
211 | disp('program stopped by user')
|
---|
212 | return
|
---|
213 | end
|
---|
214 |
|
---|
215 | %% check existence of the output file
|
---|
216 | if (~CheckOverwrite && exist(OutputFile,'file'))
|
---|
217 | disp('existing output file already exists, skip to next field')
|
---|
218 | continue% skip iteration if the mode overwrite is desactivated and the result file already exists
|
---|
219 | end
|
---|
220 |
|
---|
221 | %%%%%%%%%%%%%%%% loop on views (input lines) %%%%%%%%%%%%%%%%
|
---|
222 | Data=cell(1,NbView);%initiate the set Data
|
---|
223 |
|
---|
224 | %get Xphys,Yphys,Zphys from 1 or 2 stereo folders. Positions are taken
|
---|
225 | %at the middle between to time step
|
---|
226 | ZItemp=zeros(size(XI,1),size(XI,2),2);
|
---|
227 | if field_index==1
|
---|
228 | first_img=i1_series{1,1}(1,1); %id of the first image of the series
|
---|
229 | end
|
---|
230 |
|
---|
231 | idtemp=0;
|
---|
232 | % get the surface shape corresponding to the PIV measurements
|
---|
233 | for indextemp=field_index:field_index+1;%TODO: generalise to field index intervals>1 for PIV
|
---|
234 | idtemp=idtemp+1;
|
---|
235 | InputFile_3=fullfile(Param.InputTable{3,1},Param.InputTable{3,2},[Param.InputTable{3,3} '_' int2str(first_img+indextemp-1) '.nc']);
|
---|
236 | if NbView==3 % if there is only 1 stereo folder (2 cameras only), extract directly Xphys,Yphys and Zphys
|
---|
237 | % Data{1}: =raw PIV camera 1 only
|
---|
238 | % Data{2}: =raw PIV camera 2 only
|
---|
239 | % Data{3}: =correlation between camera 1 and 2
|
---|
240 | [Data{3},tild,errormsg] = nc2struct(InputFile_3);%read input file
|
---|
241 | if exist('Data{3}.Civ3_FF','var') % FF is present, remove wrong vector
|
---|
242 | temp=find(Data{3}.Civ3_FF==0);
|
---|
243 | Zphys=Data{3}.Zphys(temp);
|
---|
244 | Yphys=Data{3}.Yphys(temp);
|
---|
245 | Xphys=Data{3}.Xphys(temp);
|
---|
246 | else
|
---|
247 | Zphys=Data{3}.Zphys;
|
---|
248 | Yphys=Data{3}.Yphys;
|
---|
249 | Xphys=Data{3}.Xphys;
|
---|
250 | end
|
---|
251 |
|
---|
252 | elseif NbView==4 % is there is 2 stereo folders, get global U and V and compute Zphys
|
---|
253 | % Data{1}: =raw PIV camera 1 only (left)
|
---|
254 | % Data{2}: =raw PIV camera 2 only (right) (no PIV done with middle camera)
|
---|
255 | % Data{3}: =corelation between camera 1 and 3 (left and middle)
|
---|
256 | % Data{4}: =corelation between camera 2 and 3 (right and middle)
|
---|
257 | % test if the second camera (3) is the same for both folders
|
---|
258 | for i=3:4
|
---|
259 | indpt(i)=strfind(Param.InputTable{i,2},'.'); % indice of the "." is the folder name 1
|
---|
260 | indline(i)=strfind(Param.InputTable{i,2},'-'); % indice of the "-" is the folder name1
|
---|
261 | camname{i}=Param.InputTable{i,2}(indline(i)+1:indpt(i)-1);% extract the second camera name
|
---|
262 | end
|
---|
263 | if strcmp(camname{3},camname{4})==0
|
---|
264 | disp_uvmat('ERROR','The 2 stereo folders should have the same camera for the second position',checkrun)
|
---|
265 | return
|
---|
266 | end
|
---|
267 | [Data{3},tild,errormsg] = nc2struct(InputFile_3);
|
---|
268 | if exist('Data{3}.Civ3_FF','var') % if FF is present, remove wrong vector
|
---|
269 | temp=find(Data{3}.Civ3_FF==0);
|
---|
270 | Xmid3=Data{3}.Xmid(temp);
|
---|
271 | Ymid3=Data{3}.Ymid(temp);
|
---|
272 | U3=Data{3}.Uphys(temp);
|
---|
273 | V3=Data{3}.Vphys(temp);
|
---|
274 | else
|
---|
275 | Xmid3=Data{3}.Xmid;
|
---|
276 | Ymid3=Data{3}.Ymid;
|
---|
277 | U3=Data{3}.Uphys;
|
---|
278 | V3=Data{3}.Vphys;
|
---|
279 | end
|
---|
280 | %temporary grid of merging the 2 stereos data
|
---|
281 | [xq,yq] = meshgrid(min(Xmid3+(U3)/2):(max(Xmid3+(U3)/2)-min(Xmid3+(U3)/2))/128:max(Xmid3+(U3)/2),min(Ymid3+(V3)/2):(max(Ymid3+(V3)/2)-min(Ymid3+(V3)/2))/128:max(Ymid3+(V3)/2));
|
---|
282 |
|
---|
283 | %1st folder : interpolate the first camera points on the second (common) camera
|
---|
284 | %(Dalsa 3)
|
---|
285 | x3Q=griddata(Xmid3+(U3)/2,Ymid3+(V3)/2,Xmid3-(U3)/2,xq,yq);
|
---|
286 | y3Q=griddata(Xmid3+(U3)/2,Ymid3+(V3)/2,Ymid3-(V3)/2,xq,yq);
|
---|
287 |
|
---|
288 | InputFile_4=fullfile(Param.InputTable{4,1},Param.InputTable{4,2},[Param.InputTable{4,3} '_' int2str(first_img+indextemp-1) '.nc']);
|
---|
289 | [Data{4},tild,errormsg] = nc2struct(InputFile_4);
|
---|
290 | if exist('Data{4}.Civ3_FF','var') % if FF is present, remove wrong vector
|
---|
291 | temp=find(Data{4}.Civ3_FF==0);
|
---|
292 | Xmid4=Data{4}.Xmid(temp);
|
---|
293 | Ymid4=Data{4}.Ymid(temp);
|
---|
294 | U4=Data{4}.Uphys(temp);
|
---|
295 | V4=Data{4}.Vphys(temp);
|
---|
296 | else
|
---|
297 | Xmid4=Data{4}.Xmid;
|
---|
298 | Ymid4=Data{4}.Ymid;
|
---|
299 | U4=Data{4}.Uphys;
|
---|
300 | V4=Data{4}.Vphys;
|
---|
301 | end
|
---|
302 | %2nd folder :interpolate the first camera (Dalsa2) points on the second (common) camera
|
---|
303 | %(Dalsa 3)
|
---|
304 | x4Q=griddata(Xmid4+(U4)/2,Ymid4+(V4)/2,Xmid4-(U4)/2,xq,yq);
|
---|
305 | y4Q=griddata(Xmid4+(U4)/2,Ymid4+(V4)/2,Ymid4-(V4)/2,xq,yq);
|
---|
306 |
|
---|
307 | %add the displacements of the two camera pairs
|
---|
308 | xmid=reshape((x4Q+x3Q)/2,length(xq(:,1)).*length(xq(1,:)),1);
|
---|
309 | ymid=reshape((y4Q+y3Q)/2,length(yq(:,1)).*length(yq(1,:)),1);
|
---|
310 | u=reshape(x4Q-x3Q,length(xq(:,1)).*length(xq(1,:)),1);
|
---|
311 | v=reshape(y4Q-y3Q,length(yq(:,1)).*length(yq(1,:)),1);
|
---|
312 |
|
---|
313 | % get the surface z(x,y) from the combined displacement
|
---|
314 | [Zphys,Xphys,Yphys,error]=shift2z(xmid, ymid, u, v,XmlData); %get Xphy,Yphy and Zphys
|
---|
315 | %remove NaN
|
---|
316 | tempNaN=isnan(Zphys);tempind=find(tempNaN==1);
|
---|
317 | Zphys(tempind)=[];
|
---|
318 | Xphys(tempind)=[];
|
---|
319 | Yphys(tempind)=[];
|
---|
320 | error(tempind)=[];
|
---|
321 |
|
---|
322 | end
|
---|
323 |
|
---|
324 | ZItemp(:,:,idtemp)=griddata(Xphys,Yphys,Zphys,XI,YI); %interpolation on the choosen grid
|
---|
325 |
|
---|
326 | end
|
---|
327 | ZI=mean(ZItemp,3); %mean between two the two times used for surface measurement
|
---|
328 | Vtest=ZItemp(:,:,2)-ZItemp(:,:,1);
|
---|
329 |
|
---|
330 | [Xa,Ya]=px_XYZ(XmlData{1}.GeometryCalib,XI,YI,ZI);% set of image coordinates on view a
|
---|
331 | [Xb,Yb]=px_XYZ(XmlData{2}.GeometryCalib,XI,YI,ZI);% set of image coordinates on view b
|
---|
332 |
|
---|
333 |
|
---|
334 | for iview=1:2
|
---|
335 | %% reading PIV input file(s)
|
---|
336 | [Data{iview},tild,errormsg]=read_civdata(filecell{iview,field_index},{'vec(U,V)'},'*');
|
---|
337 | if ~isempty(errormsg)
|
---|
338 | disp_uvmat('ERROR',['ERROR in civ2vel_3C/read_field/' errormsg],checkrun)
|
---|
339 | return
|
---|
340 | end
|
---|
341 | % get the time defined in the current file if not already defined from the xml file
|
---|
342 | if isfield(Data{iview},'Time')&& isequal(Data{iview}.Time,Data{1}.Time)
|
---|
343 | Time=Data{iview}.Time;
|
---|
344 | else
|
---|
345 | disp_uvmat('ERROR','Time undefined or not synchronous',checkrun)
|
---|
346 | return
|
---|
347 | end
|
---|
348 | if isfield(Data{iview},'Dt')&& isequal(Data{iview}.Dt,Data{1}.Dt)
|
---|
349 | Dt=Data{iview}.Dt;
|
---|
350 | else
|
---|
351 | disp_uvmat('ERROR','Dt undefined or not synchronous',checkrun)
|
---|
352 | return
|
---|
353 | end
|
---|
354 | end
|
---|
355 | %remove false vectors
|
---|
356 | temp=find(Data{1}.FF==0);
|
---|
357 | X1=Data{1}.X(temp);
|
---|
358 | Y1=Data{1}.Y(temp);
|
---|
359 | U1=Data{1}.U(temp);
|
---|
360 | V1=Data{1}.V(temp);
|
---|
361 |
|
---|
362 | Ua=griddata(X1,Y1,U1,Xa,Ya);
|
---|
363 | Va=griddata(X1,Y1,V1,Xa,Ya);
|
---|
364 |
|
---|
365 | [Ua,Va,Xa,Ya]=Ud2U(XmlData{1}.GeometryCalib,Xa,Ya,Ua,Va); % convert Xd data to X
|
---|
366 | [A]=get_coeff(XmlData{1}.GeometryCalib,Xa,Ya,XI,YI,ZI); %get coef A~
|
---|
367 |
|
---|
368 | %remove false vectors
|
---|
369 | temp=find(Data{2}.FF==0);
|
---|
370 | X2=Data{2}.X(temp);
|
---|
371 | Y2=Data{2}.Y(temp);
|
---|
372 | U2=Data{2}.U(temp);
|
---|
373 | V2=Data{2}.V(temp);
|
---|
374 | Ub=griddata(X2,Y2,U2,Xb,Yb);
|
---|
375 | Vb=griddata(X2,Y2,V2,Xb,Yb);
|
---|
376 |
|
---|
377 | [Ub,Vb,Xb,Yb]=Ud2U(XmlData{2}.GeometryCalib,Xb,Yb,Ub,Vb); % convert Xd data to X
|
---|
378 | [B]=get_coeff(XmlData{2}.GeometryCalib,Xb,Yb,XI,YI,ZI); %get coef B~
|
---|
379 |
|
---|
380 |
|
---|
381 | % System to solve
|
---|
382 | S=ones(size(XI,1),size(XI,2),3);
|
---|
383 | D=ones(size(XI,1),size(XI,2),3,3);
|
---|
384 |
|
---|
385 | S(:,:,1)=A(:,:,1,1).*Ua+A(:,:,2,1).*Va+B(:,:,1,1).*Ub+B(:,:,2,1).*Vb;
|
---|
386 | S(:,:,2)=A(:,:,1,2).*Ua+A(:,:,2,2).*Va+B(:,:,1,2).*Ub+B(:,:,2,2).*Vb;
|
---|
387 | S(:,:,3)=A(:,:,1,3).*Ua+A(:,:,2,3).*Va+B(:,:,1,3).*Ub+B(:,:,2,3).*Vb;
|
---|
388 | D(:,:,1,1)=A(:,:,1,1).*A(:,:,1,1)+A(:,:,2,1).*A(:,:,2,1)+B(:,:,1,1).*B(:,:,1,1)+B(:,:,2,1).*B(:,:,2,1);
|
---|
389 | D(:,:,1,2)=A(:,:,1,1).*A(:,:,1,2)+A(:,:,2,1).*A(:,:,2,2)+B(:,:,1,1).*B(:,:,1,2)+B(:,:,2,1).*B(:,:,2,2);
|
---|
390 | D(:,:,1,3)=A(:,:,1,1).*A(:,:,1,3)+A(:,:,2,1).*A(:,:,2,3)+B(:,:,1,1).*B(:,:,1,3)+B(:,:,2,1).*B(:,:,2,3);
|
---|
391 | D(:,:,2,1)=A(:,:,1,2).*A(:,:,1,1)+A(:,:,2,2).*A(:,:,2,1)+B(:,:,1,2).*B(:,:,1,1)+B(:,:,2,2).*B(:,:,2,1);
|
---|
392 | D(:,:,2,2)=A(:,:,1,2).*A(:,:,1,2)+A(:,:,2,2).*A(:,:,2,2)+B(:,:,1,2).*B(:,:,1,2)+B(:,:,2,2).*B(:,:,2,2);
|
---|
393 | D(:,:,2,3)=A(:,:,1,2).*A(:,:,1,3)+A(:,:,2,2).*A(:,:,2,3)+B(:,:,1,2).*B(:,:,1,3)+B(:,:,2,2).*B(:,:,2,3);
|
---|
394 | D(:,:,3,1)=A(:,:,1,3).*A(:,:,1,1)+A(:,:,2,3).*A(:,:,2,1)+B(:,:,1,3).*B(:,:,1,1)+B(:,:,2,3).*B(:,:,2,1);
|
---|
395 | D(:,:,3,2)=A(:,:,1,3).*A(:,:,1,2)+A(:,:,2,3).*A(:,:,2,2)+B(:,:,1,3).*B(:,:,1,2)+B(:,:,2,3).*B(:,:,2,2);
|
---|
396 | D(:,:,3,3)=A(:,:,1,3).*A(:,:,1,3)+A(:,:,2,3).*A(:,:,2,3)+B(:,:,1,3).*B(:,:,1,3)+B(:,:,2,3).*B(:,:,2,3);
|
---|
397 | for indj=1:size(XI,1)
|
---|
398 | for indi=1:size(XI,2)
|
---|
399 | dxyz=(squeeze(D(indj,indi,:,:))*1000)\(squeeze(S(indj,indi,:))*1000); % solving...
|
---|
400 | U(indj,indi)=dxyz(1);
|
---|
401 | V(indj,indi)=dxyz(2);
|
---|
402 | W(indj,indi)=dxyz(3);
|
---|
403 | end
|
---|
404 | end
|
---|
405 | Error=zeros(size(XI,1),size(XI,2),4);
|
---|
406 | Error(:,:,1)=A(:,:,1,1).*U+A(:,:,1,2).*V+A(:,:,1,3).*W-Ua;
|
---|
407 | Error(:,:,2)=A(:,:,2,1).*U+A(:,:,2,2).*V+A(:,:,2,3).*W-Va;
|
---|
408 | Error(:,:,3)=B(:,:,1,1).*U+B(:,:,1,2).*V+B(:,:,1,3).*W-Ub;
|
---|
409 | Error(:,:,4)=B(:,:,2,1).*U+B(:,:,2,2).*V+B(:,:,2,3).*W-Vb;
|
---|
410 |
|
---|
411 | %% recording the merged field
|
---|
412 | if field_index==1% initiate the structure at first index
|
---|
413 | MergeData.ListGlobalAttribute={'Conventions','Time','Dt'};
|
---|
414 | MergeData.Conventions='uvmat';
|
---|
415 | MergeData.Time=Time;
|
---|
416 | MergeData.Dt=Dt;
|
---|
417 | MergeData.ListVarName={'coord_x','coord_y','Z','U','V','W','Error'};
|
---|
418 | MergeData.VarDimName={'coord_x','coord_y',{'coord_y','coord_x'},{'coord_y','coord_x'}...
|
---|
419 | {'coord_y','coord_x'},{'coord_y','coord_x'},{'coord_y','coord_x'}};
|
---|
420 | MergeData.coord_x=xI;
|
---|
421 | MergeData.coord_y=yI;
|
---|
422 | end
|
---|
423 | MergeData.U=U/Dt;
|
---|
424 | MergeData.V=V/Dt;
|
---|
425 | MergeData.W=W/Dt;
|
---|
426 | MergeData.Z=ZI;
|
---|
427 |
|
---|
428 | % mfx=(XmlData{1}.GeometryCalib.fx_fy(1)+XmlData{2}.GeometryCalib.fx_fy(1))/2;
|
---|
429 | % mfy=(XmlData{1}.GeometryCalib.fx_fy(2)+XmlData{2}.GeometryCalib.fx_fy(2))/2;
|
---|
430 | MergeData.Error=0.5*sqrt(sum(Error.^2,3));
|
---|
431 | errormsg=struct2nc(OutputFile,MergeData);%save result file
|
---|
432 | if isempty(errormsg)
|
---|
433 | disp(['output file ' OutputFile ' written'])
|
---|
434 | else
|
---|
435 | disp(errormsg)
|
---|
436 | end
|
---|
437 | end
|
---|
438 |
|
---|
439 |
|
---|
440 | function [A]=get_coeff(Calib,X,Y,x,y,z) % compute A~ coefficients
|
---|
441 | R=(Calib.R)';%rotation matrix
|
---|
442 | T_z=Calib.Tx_Ty_Tz(3);
|
---|
443 | T=R(7)*x+R(8)*y+R(9)*z+T_z;
|
---|
444 |
|
---|
445 | A(:,:,1,1)=(R(1)-R(7)*X)./T;
|
---|
446 | A(:,:,1,2)=(R(2)-R(8)*X)./T;
|
---|
447 | A(:,:,1,3)=(R(3)-R(9)*X)./T;
|
---|
448 | A(:,:,2,1)=(R(4)-R(7)*Y)./T;
|
---|
449 | A(:,:,2,2)=(R(5)-R(8)*Y)./T;
|
---|
450 | A(:,:,2,3)=(R(6)-R(9)*Y)./T;
|
---|
451 |
|
---|
452 | function [U,V,X,Y]=Ud2U(Calib,Xd,Yd,Ud,Vd)
|
---|
453 | % convert image coordinates to view angles, after removal of quadratic distorsion
|
---|
454 | % input in pixel, output in radians
|
---|
455 | X1d=Xd-Ud/2;
|
---|
456 | X2d=Xd+Ud/2;
|
---|
457 | Y1d=Yd-Vd/2;
|
---|
458 | Y2d=Yd+Vd/2;
|
---|
459 |
|
---|
460 | X1=(X1d-Calib.Cx_Cy(1))./Calib.fx_fy(1).*(1 + Calib.kc.*Calib.fx_fy(1).^(-2).*(X1d-Calib.Cx_Cy(1)).^2 + Calib.kc.*Calib.fx_fy(2).^(-2).*(Y1d-Calib.Cx_Cy(2)).^2 ).^(-1);
|
---|
461 | X2=(X2d-Calib.Cx_Cy(1))./Calib.fx_fy(1).*(1 + Calib.kc.*Calib.fx_fy(1).^(-2).*(X2d-Calib.Cx_Cy(1)).^2 + Calib.kc.*Calib.fx_fy(2).^(-2).*(Y2d-Calib.Cx_Cy(2)).^2 ).^(-1);
|
---|
462 | Y1=(Y1d-Calib.Cx_Cy(2))./Calib.fx_fy(2).*(1 + Calib.kc.*Calib.fx_fy(1).^(-2).*(X1d-Calib.Cx_Cy(1)).^2 + Calib.kc.*Calib.fx_fy(2).^(-2).*(Y1d-Calib.Cx_Cy(2)).^2 ).^(-1);
|
---|
463 | Y2=(Y2d-Calib.Cx_Cy(2))./Calib.fx_fy(2).*(1 + Calib.kc.*Calib.fx_fy(1).^(-2).*(X2d-Calib.Cx_Cy(1)).^2 + Calib.kc.*Calib.fx_fy(2).^(-2).*(Y2d-Calib.Cx_Cy(2)).^2 ).^(-1);
|
---|
464 |
|
---|
465 | U=X2-X1;
|
---|
466 | V=Y2-Y1;
|
---|
467 | X=X1+U/2;
|
---|
468 | Y=Y1+V/2;
|
---|
469 |
|
---|
470 |
|
---|
471 |
|
---|
472 | function [z,Xphy,Yphy,error]=shift2z(xmid, ymid, u, v,XmlData) % get H from stereo data
|
---|
473 | z=0;
|
---|
474 | error=0;
|
---|
475 |
|
---|
476 | %% first image
|
---|
477 | Calib_A=XmlData{1}.GeometryCalib;
|
---|
478 | R=(Calib_A.R)';
|
---|
479 | x_a=xmid- u/2;
|
---|
480 | y_a=ymid- v/2;
|
---|
481 | z_a=R(7)*x_a+R(8)*y_a+Calib_A.Tx_Ty_Tz(1,3);
|
---|
482 | Xa=(R(1)*x_a+R(2)*y_a+Calib_A.Tx_Ty_Tz(1,1))./z_a;
|
---|
483 | Ya=(R(4)*x_a+R(5)*y_a+Calib_A.Tx_Ty_Tz(1,2))./z_a;
|
---|
484 |
|
---|
485 | A_1_1=R(1)-R(7)*Xa;
|
---|
486 | A_1_2=R(2)-R(8)*Xa;
|
---|
487 | A_1_3=R(3)-R(9)*Xa;
|
---|
488 | A_2_1=R(4)-R(7)*Ya;
|
---|
489 | A_2_2=R(5)-R(8)*Ya;
|
---|
490 | A_2_3=R(6)-R(9)*Ya;
|
---|
491 | Det=A_1_1.*A_2_2-A_1_2.*A_2_1;
|
---|
492 | Dxa=(A_1_2.*A_2_3-A_2_2.*A_1_3)./Det;
|
---|
493 | Dya=(A_2_1.*A_1_3-A_1_1.*A_2_3)./Det;
|
---|
494 |
|
---|
495 | %% second image
|
---|
496 | %loading shift angle
|
---|
497 |
|
---|
498 | Calib_B=XmlData{2}.GeometryCalib;
|
---|
499 | R=(Calib_B.R)';
|
---|
500 |
|
---|
501 |
|
---|
502 | x_b=xmid+ u/2;
|
---|
503 | y_b=ymid+ v/2;
|
---|
504 | z_b=R(7)*x_b+R(8)*y_b+Calib_B.Tx_Ty_Tz(1,3);
|
---|
505 | Xb=(R(1)*x_b+R(2)*y_b+Calib_B.Tx_Ty_Tz(1,1))./z_b;
|
---|
506 | Yb=(R(4)*x_b+R(5)*y_b+Calib_B.Tx_Ty_Tz(1,2))./z_b;
|
---|
507 | B_1_1=R(1)-R(7)*Xb;
|
---|
508 | B_1_2=R(2)-R(8)*Xb;
|
---|
509 | B_1_3=R(3)-R(9)*Xb;
|
---|
510 | B_2_1=R(4)-R(7)*Yb;
|
---|
511 | B_2_2=R(5)-R(8)*Yb;
|
---|
512 | B_2_3=R(6)-R(9)*Yb;
|
---|
513 | Det=B_1_1.*B_2_2-B_1_2.*B_2_1;
|
---|
514 | Dxb=(B_1_2.*B_2_3-B_2_2.*B_1_3)./Det;
|
---|
515 | Dyb=(B_2_1.*B_1_3-B_1_1.*B_2_3)./Det;
|
---|
516 |
|
---|
517 | %% result
|
---|
518 | Den=(Dxb-Dxa).*(Dxb-Dxa)+(Dyb-Dya).*(Dyb-Dya);
|
---|
519 | error=abs(((Dyb-Dya).*(-u)-(Dxb-Dxa).*(-v)))./Den;
|
---|
520 | % ex=-error.*(Dyb-Dya);
|
---|
521 | % ey=-error.*(Dxb-Dxa);
|
---|
522 |
|
---|
523 | % z1=-u./(Dxb-Dxa);
|
---|
524 | % z2=-v./(Dyb-Dya);
|
---|
525 | z=((Dxb-Dxa).*(-u)+(Dyb-Dya).*(-v))./Den;
|
---|
526 |
|
---|
527 | xnew(1,:)=Dxa.*z+x_a;
|
---|
528 | xnew(2,:)=Dxb.*z+x_b;
|
---|
529 | ynew(1,:)=Dya.*z+y_a;
|
---|
530 | ynew(2,:)=Dyb.*z+y_b;
|
---|
531 | Xphy=mean(xnew,1);
|
---|
532 | Yphy=mean(ynew,1);
|
---|
533 |
|
---|
534 |
|
---|
535 |
|
---|
536 |
|
---|