%'merge_proj': concatene several fields from series, project on a polar grid %------------------------------------------------------------------------ % function ParamOut=merge_proj(Param) %------------------------------------------------------------------------ %%%%%%%%%%% GENERAL TO ALL SERIES ACTION FCTS %%%%%%%%%%%%%%%%%%%%%%%%%%% % %OUTPUT % ParamOut: sets options in the GUI series.fig needed for the function % %INPUT: % In run mode, the input parameters are given as a Matlab structure Param copied from the GUI series. % In batch mode, Param is the name of the corresponding xml file containing the same information % when Param.Action.RUN=0 (as activated when the current Action is selected % in series), the function ouput paramOut set the activation of the needed GUI elements % % Param contains the elements:(use the menu bar command 'export/GUI config' in series to % see the current structure Param) % .InputTable: cell of input file names, (several lines for multiple input) % each line decomposed as {RootPath,SubDir,Rootfile,NomType,Extension} % .OutputSubDir: name of the subdirectory for data outputs % .OutputDirExt: directory extension for data outputs % .Action: .ActionName: name of the current activated function % .ActionPath: path of the current activated function % .ActionExt: fct extension ('.m', Matlab fct, '.sh', compiled Matlab fct % .RUN =0 for GUI input, =1 for function activation % .RunMode='local','background', 'cluster': type of function use % % .IndexRange: set the file or frame indices on which the action must be performed % .FieldTransform: .TransformName: name of the selected transform function % .TransformPath: path of the selected transform function % .InputFields: sub structure describing the input fields withfields % .FieldName: name(s) of the field % .VelType: velocity type % .FieldName_1: name of the second field in case of two input series % .VelType_1: velocity type of the second field in case of two input series % .Coord_y: name of y coordinate variable % .Coord_x: name of x coordinate variable % .ProjObject: %sub structure describing a projection object (read from ancillary GUI set_object) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %======================================================================= % Copyright 2008-2019, LEGI UMR 5519 / CNRS UGA G-INP, Grenoble, France % http://www.legi.grenoble-inp.fr % Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr % % This file is part of the toolbox UVMAT. % % UVMAT is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published % by the Free Software Foundation; either version 2 of the license, % or (at your option) any later version. % % UVMAT is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License (see LICENSE.txt) for more details. %======================================================================= function ParamOut=merge_proj_polar(Param) %% set the input elements needed on the GUI series when the function is selected in the menu ActionName or InputTable refreshed if isstruct(Param) && isequal(Param.Action.RUN,0) ParamOut.AllowInputSort='on';% allow alphabetic sorting of the list of input file SubDir (options 'off'/'on', 'off' by default) ParamOut.WholeIndexRange='off';% prescribes the file index ranges from min to max (options 'off'/'on', 'off' by default) ParamOut.NbSlice='on'; %nbre of slices ('off' by default) ParamOut.VelType='one';% menu for selecting the velocity type (options 'off'/'one'/'two', 'off' by default) ParamOut.FieldName='off';% menu for selecting the field (s) in the input file(options 'off'/'one'/'two', 'off' by default) ParamOut.FieldTransform = 'on';%can use a transform function ParamOut.TransformPath=fullfile(fileparts(which('uvmat')),'transform_field');% path to transform functions (needed for compilation only) ParamOut.ProjObject='off';%can use projection object(option 'off'/'on', ParamOut.Mask='off';%can use mask option (option 'off'/'on', 'off' by default) ParamOut.OutputDirExt='.polar';%set the output dir extension ParamOut.OutputFileMode='NbInput';% '=NbInput': 1 output file per input file index, '=NbInput_i': 1 file per input file index i, '=NbSlice': 1 file per slice %check the input files ParamOut.CheckOverwriteVisible='on'; % manage the overwrite of existing files (default=1) first_j=[]; if isfield(Param.IndexRange,'first_j'); first_j=Param.IndexRange.first_j; end PairString=''; if isfield(Param.IndexRange,'PairString'); PairString=Param.IndexRange.PairString; end [i1,i2,j1,j2] = get_file_index(Param.IndexRange.first_i,first_j,PairString); FirstFileName=fullfile_uvmat(Param.InputTable{1,1},Param.InputTable{1,2},Param.InputTable{1,3},... Param.InputTable{1,5},Param.InputTable{1,4},i1,i2,j1,j2); if ~exist(FirstFileName,'file') msgbox_uvmat('WARNING',['the first input file ' FirstFileName ' does not exist']) end return end %%%% specific input parameters % calculate the positions on which to interpolate radius_ref=450;% radius of the mountain top radius_shifted=-130:2:130;% radius shifted by the radius of the origin at the topography summit radius=radius_ref+radius_shifted;%radius from centre of the tank azimuth_arclength=(-150:2:400);%azimuth in arc length at origin position azimuth=pi/2-azimuth_arclength/radius_ref;%azimuth in radian [Radius,Azimuth]=meshgrid(radius,azimuth); XI=Radius.*cos(Azimuth);% set of x axis of the points where interpolqtion needs to be done YI=Radius.*sin(Azimuth)-radius_ref;% set of y axis of the points where interpolqtion needs to be done FieldNames={'vec(U,V)';'curl(U,V)';'div(U,V)'}; HeadData.ListVarName= {'radius','azimuth'} ; HeadData.VarDimName={'radius','azimuth'}; HeadData.VarAttribute{1}.Role='coord_y'; HeadData.VarAttribute{2}.Role='coord_x'; HeadData.radius=radius_shifted; HeadData.azimuth=azimuth_arclength; thresh2=16; % square of the interpolation range %%%%%%%%%%%% STANDARD PART (DO NOT EDIT) %%%%%%%%%%%% ParamOut=[]; %default output RUNHandle=[]; WaitbarHandle=[]; %% read input parameters from an xml file if input is a file name (batch mode) checkrun=1; if ischar(Param) Param=xml2struct(Param);% read Param as input file (batch case) checkrun=0; else hseries=findobj(allchild(0),'Tag','series'); RUNHandle=findobj(hseries,'Tag','RUN');%handle of RUN button in GUI series WaitbarHandle=findobj(hseries,'Tag','Waitbar');%handle of waitbar in GUI series end %% root input file type RootPath=Param.InputTable(:,1); RootFile=Param.InputTable(:,3); SubDir=Param.InputTable(:,2); %NomType=Param.InputTable(:,4); FileExt=Param.InputTable(:,5); [filecell,i1_series,i2_series,j1_series,j2_series]=get_file_series(Param); %%%%%%%%%%%% % The cell array filecell is the list of input file names, while % filecell{iview,fileindex}: % iview: line in the table corresponding to a given file series % fileindex: file index within the file series, % i1_series(iview,ref_j,ref_i)... are the corresponding arrays of indices i1,i2,j1,j2, depending on the input line iview and the two reference indices ref_i,ref_j % i1_series(iview,fileindex) expresses the same indices as a 1D array in file indices %%%%%%%%%%%% % NbSlice=1;%default % if isfield(Param.IndexRange,'NbSlice')&&~isempty(Param.IndexRange.NbSlice) % NbSlice=Param.IndexRange.NbSlice; % end NbView=numel(i1_series);%number of input file series (lines in InputTable) NbField_j=size(i1_series{1},1); %nb of fields for the j index (bursts or volume slices) NbField_i=size(i1_series{1},2); %nb of fields for the i index NbField=NbField_j*NbField_i; %total number of fields %% define the name for result file (with path=RootPath{1}) OutputDir=[Param.OutputSubDir Param.OutputDirExt];% subdirectory for output files % OutputFile=fullfile_uvmat(RootPath{1},OutputDir,RootFile{1},'.nc','_1',i1_series{1}(1)); % CheckOverwrite=1;%default % if isfield(Param,'CheckOverwrite') % CheckOverwrite=Param.CheckOverwrite; % end % if ~CheckOverwrite && exist(OutputFile,'file') % disp(['existing output file ' OutputFile ' already exists, skip to next field']) % return% skip iteration if the mode overwrite is desactivated and the result file already exists % end if ~isfield(Param,'InputFields') Param.InputFields.FieldName=''; end %% determine the file type on each line from the first input file ImageTypeOptions={'image','multimage','mmreader','video','cine_phantom'}; NcTypeOptions={'netcdf','civx','civdata'}; for iview=1:NbView if ~exist(filecell{iview,1}','file') disp_uvmat('ERROR',['the first input file ' filecell{iview,1} ' does not exist'],checkrun) return end [FileInfo{iview},MovieObject{iview}]=get_file_info(filecell{iview,1}); FileType{iview}=FileInfo{iview}.FileType; CheckImage{iview}=~isempty(find(strcmp(FileType{iview},ImageTypeOptions)));% =1 for images if CheckImage{iview} ParamIn{iview}=MovieObject{iview}; else ParamIn{iview}=Param.InputFields; end CheckNc{iview}=~isempty(find(strcmp(FileType{iview},NcTypeOptions)));% =1 for netcdf files if ~isempty(j1_series{iview}) frame_index{iview}=j1_series{iview}; else frame_index{iview}=i1_series{iview}; end end if NbView >1 && max(cell2mat(CheckImage))>0 && ~isfield(Param,'ProjObject') disp_uvmat('ERROR','projection on a common grid is needed to concatene images: use a Projection Object of type ''plane'' with ProjMode=''interp_lin''',checkrun) return end %% calibration data and timing: read the ImaDoc files [XmlData,NbSlice_calib,time,errormsg]=read_multimadoc(RootPath,SubDir,RootFile,FileExt,i1_series,i2_series,j1_series,j2_series); if size(time,1)>1 diff_time=max(max(diff(time))); if diff_time>0 disp_uvmat('WARNING',['times of series differ by (max) ' num2str(diff_time) ': the mean time is chosen in result'],checkrun) end end if ~isempty(errormsg) disp_uvmat('WARNING',errormsg,checkrun) end time=mean(time,1); %averaged time taken for the merged field %% height z % position of projection plane ProjObjectCoord=XmlData{1}.GeometryCalib.SliceCoord; CoordUnit=XmlData{1}.GeometryCalib.CoordUnit; for iview =2:numel(XmlData) if ~(isfield(XmlData{iview},'GeometryCalib')&& isequal(XmlData{iview}.GeometryCalib.SliceCoord,ProjObjectCoord))... disp('error: geometric calibration missing or inconsistent plane positions') return end end %% coordinate transform or other user defined transform transform_fct='';%default fct handle if isfield(Param,'FieldTransform')&&~isempty(Param.FieldTransform.TransformName) currentdir=pwd; cd(Param.FieldTransform.TransformPath) transform_fct=str2func(Param.FieldTransform.TransformName); cd (currentdir) if isfield(Param,'TransformInput') for iview=1:NbView XmlData{iview}.TransformInput=Param.TransformInput; end end end %%%%%%%%%%%% END STANDARD PART %%%%%%%%%%%% % EDIT FROM HERE %% check the validity of input file types for iview=1:NbView if ~isequal(CheckNc{iview},1) disp_uvmat('ERROR','input files needs to be in netcdf (extension .nc)',checkrun) return end end % %% output file type if isempty(j1_series{1}) NomTypeOut='_1'; else NomTypeOut='_1_1'; end RootFileOut=RootFile{1}; for iview=2:NbView if ~strcmp(RootFile{iview},RootFile{1}) RootFileOut='mproj'; break end end %% MAIN LOOP ON FIELDS %%%%%%%%%%%%% STANDARD PART (DO NOT EDIT) %%%%%%%%%%%% % for i_slice=1:NbSlice % index_slice=i_slice:NbSlice:NbField;% select file indices of the slice % NbFiles=0; % nbmissing=0; %%%%%%%%%%%%%%%% loop on field indices %%%%%%%%%%%%%%%% tstart=tic; %used to record the computing time CheckOverwrite=1;%default if isfield(Param,'CheckOverwrite') CheckOverwrite=Param.CheckOverwrite; end for index=1:NbField disp(['index=' num2str(index)]) disp(['ellapsed time ' num2str(toc(tstart)/60,4) ' minutes']) update_waitbar(WaitbarHandle,index/NbField) if ~isempty(RUNHandle) && ~strcmp(get(RUNHandle,'BusyAction'),'queue') disp('program stopped by user') return end %% generating the name of the merged field i1=i1_series{1}(index); if ~isempty(i2_series{end}) i2=i2_series{end}(index); else i2=i1; end j1=1; j2=1; if ~isempty(j1_series{1}) j1=j1_series{1}(index); if ~isempty(j2_series{end}) j2=j2_series{end}(index); else j2=j1; end end OutputFile=fullfile_uvmat(RootPath{1},OutputDir,RootFileOut,'.nc',NomTypeOut,i1,i2,j1,j2); if ~CheckOverwrite && exist(OutputFile,'file') disp(['existing output file ' OutputFile ' already exists, skip to next field']) continue% skip iteration if the mode overwrite is desactivated and the result file already exists end %% z position ZIndex=mod(i1_series{1}(index)-1,NbSlice_calib{1})+1;%Zindex for phys transform ZPosNew=ProjObjectCoord(ZIndex,3); if index==1 ZPos=ZPosNew; else if ZPosNew~=ZPos disp('inconsistent z positions in the series') return end end % radius of the topography section at z position ind_mask=[]; if ZPos<20 TopoRadius=40*sin(acos((20+ZPos)/40)); ind_mask=(XI'.*XI'+YI'.*YI')=2 Data{iview}=transform_fct(Data{iview},XmlData{iview}); else Data{iview}=transform_fct(Data{iview}); end end %% calculate tps coefficients Data{iview}=tps_coeff_field(Data{iview},1); %% projection on the polar grid [DataOut,VarAttribute,errormsg]=calc_field_tps(Data{iview}.Coord_tps,Data{iview}.NbCentre,Data{iview}.SubRange,... cat(3,Data{iview}.U_tps,Data{iview}.V_tps),FieldNames,cat(3,XI,YI)); % set to NaN interpolation points which are too far from any initial data (more than 2 CoordMesh) Coord=permute(Data{iview}.Coord_tps,[1 3 2]); Coord=reshape(Coord,size(Coord,1)*size(Coord,2),2); if exist('scatteredInterpolant','file')%recent Matlab versions F=scatteredInterpolant(Coord,Coord(:,1),'nearest'); G=scatteredInterpolant(Coord,Coord(:,2),'nearest'); else F=TriScatteredInterp(Coord,Coord(:,1),'nearest'); G=TriScatteredInterp(Coord,Coord(:,2),'nearest'); end Distx=F(XI,YI)-XI;% diff of x coordinates with the nearest measurement point Disty=G(XI,YI)-YI;% diff of y coordinates with the nearest measurement point Dist=Distx.*Distx+Disty.*Disty; ListVarName=(fieldnames(DataOut))'; VarDimName=cell(size(ListVarName)); ProjData{iview}=HeadData; ProjData{iview}.ListVarName= [ProjData{iview}.ListVarName ListVarName]; ProjData{iview}.VarDimName={'radius','azimuth'}; % ProjData{iview}.VarAttribute{1}.Role='coord_y'; % ProjData{iview}.VarAttribute{2}.Role='coord_x'; ProjData{iview}.VarAttribute=[ProjData{iview}.VarAttribute VarAttribute]; for ivar=1:numel(ListVarName) ProjData{iview}.VarDimName{ivar+2}={'radius','azimuth'}; VarName=ListVarName{ivar}; if ~isempty(thresh2) DataOut.(VarName)(Dist>thresh2)=NaN;% put to NaN interpolated positions further than RangeInterp from initial data end ProjData{iview}.(VarName)=(DataOut.(VarName))'; end end %%%%%%%%%%%%%%%% END LOOP ON VIEWS %%%%%%%%%%%%%%%% %% merge the NbView fields [MergeData,errormsg]=merge_field(ProjData); if ~isempty(errormsg) disp_uvmat('ERROR',errormsg,checkrun); return end %% time of the merged field: take the average of the different views if ~isempty(time) timeread=time(index); elseif ~isempty(find(timeread))% time defined from ImaDoc timeread=mean(timeread(timeread~=0));% take average over times form the files (when defined) else timeread=index;% take time=file index end %% rotating the velocity vectors to the local axis of the polatr coordinates Unew=MergeData.U.*sin(Azimuth')-MergeData.V.*cos(Azimuth'); Vnew=MergeData.U.*cos(Azimuth')+MergeData.V.*sin(Azimuth'); if ~isempty(ind_mask) Unew(ind_mask)=NaN; Vnew(ind_mask)=NaN; MergeData.curl(ind_mask)=NaN; MergeData.div(ind_mask)=NaN; end [npy,npx]=size(Unew); %% create the output file for the first iteration of the loop if index==1 TimeData.ListGlobalAttribute={'Conventions','Project','CoordUnit','TimeUnit','ZPos','Time'}; TimeData.Conventions='uvmat'; TimeData.Project='2016_Circumpolar'; TimeData.CoordUnit='cm'; TimeData.TimeUnit='s'; TimeData.ZPos=ZPos; TimeData.ListVarName={'radius','azimuth','U','V','curl','div'}; TimeData.VarDimName={'radius','azimuth',{'radius','azimuth'},{'radius','azimuth'}... {'radius','azimuth'},{'radius','azimuth'}}; TimeData.VarAttribute{1}.Role=''; TimeData.VarAttribute{2}.Role=''; TimeData.VarAttribute{3}.Role='vector_x'; TimeData.VarAttribute{4}.Role='vector_y'; TimeData.VarAttribute{5}.Role='scalar'; TimeData.VarAttribute{6}.Role='scalar'; TimeData.radius=radius_shifted; TimeData.azimuth=azimuth_arclength; end %% append data to the netcdf file for next iterations TimeData.Time=timeread; TimeData.U=Unew; TimeData.V=Vnew; TimeData.curl=MergeData.curl; TimeData.div=MergeData.div; [error,ncid]=struct2nc(OutputFile,TimeData);%save result file if isempty(error) disp(['output file ' OutputFile ' written']) else disp(error) end ellapsed_time=toc(tstart); disp(['total ellapsed time ' num2str(ellapsed_time/60,2) ' minutes']) end ellapsed_time=toc(tstart); disp(['total ellapsed time ' num2str(ellapsed_time/60,2) ' minutes']) disp([ num2str(ellapsed_time/(60*NbField),3) ' minutes per iteration']) % %'merge_field': concatene fields % %------------------------------------------------------------------------ % function [MergeData,errormsg]=merge_field(Data) % %% default output % if isempty(Data)||~iscell(Data) % MergeData=[]; % return % end % errormsg=''; % MergeData=Data{1};% merged field= first field by default, reproduces the global attributes of the first field % NbView=length(Data); % if NbView==1% if there is only one field, just reproduce it in MergeData % return % end % % %% group the variables (fields of 'Data') in cells of variables with the same dimensions % [CellInfo,NbDim,errormsg]=find_field_cells(Data{1}); % if ~isempty(errormsg) % return % end % % %LOOP ON GROUPS OF VARIABLES SHARING THE SAME DIMENSIONS % for icell=1:length(CellInfo) % if NbDim(icell)~=1 % skip field cells which are of dim 1 % switch CellInfo{icell}.CoordType % case 'scattered' %case of input fields with unstructured coordinates: just concatene data % for ivar=CellInfo{icell}.VarIndex % indices of the selected variables in the list FieldData.ListVarName % VarName=Data{1}.ListVarName{ivar}; % for iview=2:NbView % MergeData.(VarName)=[MergeData.(VarName); Data{iview}.(VarName)]; % end % end % case 'grid' %case of fields defined on a structured grid % FFName=''; % if isfield(CellInfo{icell},'VarIndex_errorflag') && ~isempty(CellInfo{icell}.VarIndex_errorflag) % FFName=Data{1}.ListVarName{CellInfo{icell}.VarIndex_errorflag};% name of errorflag variable % MergeData.ListVarName(CellInfo{icell}.VarIndex_errorflag)=[];%remove error flag variable in MergeData (will use NaN instead) % MergeData.VarDimName(CellInfo{icell}.VarIndex_errorflag)=[]; % MergeData.VarAttribute(CellInfo{icell}.VarIndex_errorflag)=[]; % end % % select good data on each view % for ivar=CellInfo{icell}.VarIndex % indices of the selected variables in the list FieldData.ListVarName % VarName=Data{1}.ListVarName{ivar}; % for iview=1:NbView % if isempty(FFName) % check_bad=isnan(Data{iview}.(VarName));%=0 for NaN data values, 1 else % else % check_bad=isnan(Data{iview}.(VarName)) | Data{iview}.(FFName)~=0;%=0 for NaN or error flagged data values, 1 else % end % Data{iview}.(VarName)(check_bad)=0; %set to zero NaN or data marked by error flag % if iview==1 % %MergeData.(VarName)=Data{1}.(VarName);% initiate MergeData with the first field % MergeData.(VarName)(check_bad)=0; %set to zero NaN or data marked by error flag % NbAver=~check_bad;% initiate NbAver: the nbre of good data for each point % elseif size(Data{iview}.(VarName))~=size(MergeData.(VarName)) % errormsg='sizes of the input matrices do not agree, need to interpolate on a common grid using a projection object'; % return % else % MergeData.(VarName)=MergeData.(VarName) +double(Data{iview}.(VarName));%add data % NbAver=NbAver + ~check_bad;% add 1 for good data, 0 else % end % end % MergeData.(VarName)(NbAver~=0)=MergeData.(VarName)(NbAver~=0)./NbAver(NbAver~=0);% take average of defined data at each point % MergeData.(VarName)(NbAver==0)=NaN;% set to NaN the points with no good data % end % end % % end % end %'merge_field': concatene fields %------------------------------------------------------------------------ function [MergeData,errormsg]=merge_field(Data) %% default output if isempty(Data)||~iscell(Data) MergeData=[]; return end errormsg=''; MergeData=Data{1};% merged field= first field by default, reproduces the global attributes of the first field NbView=length(Data); if NbView==1% if there is only one field, just reproduce it in MergeData return end %% group the variables (fields of 'Data') in cells of variables with the same dimensions [CellInfo,NbDim,errormsg]=find_field_cells(Data{1}); if ~isempty(errormsg) return end %LOOP ON GROUPS OF VARIABLES SHARING THE SAME DIMENSIONS for icell=1:length(CellInfo) if NbDim(icell)~=1 % skip field cells which are of dim 1 switch CellInfo{icell}.CoordType case 'scattered' %case of input fields with unstructured coordinates: just concatene data for ivar=CellInfo{icell}.VarIndex % indices of the selected variables in the list FieldData.ListVarName VarName=Data{1}.ListVarName{ivar}; for iview=2:NbView MergeData.(VarName)=[MergeData.(VarName); Data{iview}.(VarName)]; end end case 'grid' %case of fields defined on a structured grid FFName=''; if isfield(CellInfo{icell},'VarIndex_errorflag') && ~isempty(CellInfo{icell}.VarIndex_errorflag) FFName=Data{1}.ListVarName{CellInfo{icell}.VarIndex_errorflag};% name of errorflag variable MergeData.ListVarName(CellInfo{icell}.VarIndex_errorflag)=[];%remove error flag variable in MergeData (will use NaN instead) MergeData.VarDimName(CellInfo{icell}.VarIndex_errorflag)=[]; MergeData.VarAttribute(CellInfo{icell}.VarIndex_errorflag)=[]; end % select good data on each view for ivar=CellInfo{icell}.VarIndex % indices of the selected variables in the list FieldData.ListVarName VarName=Data{1}.ListVarName{ivar}; for iview=1:NbView if isempty(FFName) check_bad=isnan(Data{iview}.(VarName));%=0 for NaN data values, 1 else else check_bad=isnan(Data{iview}.(VarName)) | Data{iview}.(FFName)~=0;%=0 for NaN or error flagged data values, 1 else end Data{iview}.(VarName)(check_bad)=0; %set to zero NaN or data marked by error flag if iview==1 %MergeData.(VarName)=Data{1}.(VarName);% initiate MergeData with the first field MergeData.(VarName)(check_bad)=0; %set to zero NaN or data marked by error flag NbAver=~check_bad;% initiate NbAver: the nbre of good data for each point elseif size(Data{iview}.(VarName))~=size(MergeData.(VarName)) errormsg='sizes of the input matrices do not agree, need to interpolate on a common grid using a projection object'; return else MergeData.(VarName)=MergeData.(VarName) +double(Data{iview}.(VarName));%add data NbAver=NbAver + ~check_bad;% add 1 for good data, 0 else end end MergeData.(VarName)(NbAver~=0)=MergeData.(VarName)(NbAver~=0)./NbAver(NbAver~=0);% take average of defined data at each point MergeData.(VarName)(NbAver==0)=NaN;% set to NaN the points with no good data end end end end