1 | % function ParamOut=particle_tracking(Param) |
---|
2 | % |
---|
3 | % Method: |
---|
4 | |
---|
5 | % Organization of image indices: |
---|
6 | |
---|
7 | %INPUT: |
---|
8 | % num_i1: matrix of image indices i |
---|
9 | % num_j1: matrix of image indices j, must be the same size as num_i1 |
---|
10 | % num_i2 and num_j2: not used for a function acting on images |
---|
11 | % Series: matlab structure containing parameters, as defined by the interface UVMAT/series |
---|
12 | % Series.RootPath{1}: path to the image series |
---|
13 | % Series.RootFile{1}: root file name |
---|
14 | % Series.FileExt{1}: image file extension |
---|
15 | % Series.NomType{1}: nomenclature type for file in |
---|
16 | % |
---|
17 | % Method: |
---|
18 | % Series.NbSlice: %number of slices defined on the interface |
---|
19 | % global A rangx0 rangy0 minA maxA; % make current image A accessible in workspace |
---|
20 | % global hfig1 hfig2 scalar |
---|
21 | % global Abackg nbpart lum diam |
---|
22 | %%%%%%%%%%%%%%ᅵ |
---|
23 | % |
---|
24 | %%%%%%%%%%% GENERAL TO ALL SERIES ACTION FCTS %%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
25 | % |
---|
26 | %OUTPUT |
---|
27 | % ParamOut: sets options in the GUI series.fig needed for the function |
---|
28 | % |
---|
29 | %INPUT: |
---|
30 | % In run mode, the input parameters are given as a Matlab structure Param copied from the GUI series. |
---|
31 | % In batch mode, Param is the name of the corresponding xml file containing the same information |
---|
32 | % when Param.Action.RUN=0 (as activated when the current Action is selected |
---|
33 | % in series), the function ouput paramOut set the activation of the needed GUI elements |
---|
34 | % |
---|
35 | % Param contains the elements:(use the menu bar command 'export/GUI config' in series to |
---|
36 | % see the current structure Param) |
---|
37 | % .InputTable: cell of input file names, (several lines for multiple input) |
---|
38 | % each line decomposed as {RootPath,SubDir,Rootfile,NomType,Extension} |
---|
39 | % .OutputSubDir: name of the subdirectory for data outputs |
---|
40 | % .OutputDirExt: directory extension for data outputs |
---|
41 | % .Action: .ActionName: name of the current activated function |
---|
42 | % .ActionPath: path of the current activated function |
---|
43 | % .ActionExt: fct extension ('.m', Matlab fct, '.sh', compiled Matlab fct |
---|
44 | % .RUN =0 for GUI input, =1 for function activation |
---|
45 | % .RunMode='local','background', 'cluster': type of function use |
---|
46 | % |
---|
47 | % .IndexRange: set the file or frame indices on which the action must be performed |
---|
48 | % .FieldTransform: .TransformName: name of the selected transform function |
---|
49 | % .TransformPath: path of the selected transform function |
---|
50 | % .InputFields: sub structure describing the input fields withfields |
---|
51 | % .FieldName: name(s) of the field |
---|
52 | % .VelType: velocity type |
---|
53 | % .FieldName_1: name of the second field in case of two input series |
---|
54 | % .VelType_1: velocity type of the second field in case of two input series |
---|
55 | % .Coord_y: name of y coordinate variable |
---|
56 | % .Coord_x: name of x coordinate variable |
---|
57 | % .ProjObject: %sub structure describing a projection object (read from ancillary GUI set_object) |
---|
58 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
59 | |
---|
60 | %======================================================================= |
---|
61 | % Copyright 2008-2024, LEGI UMR 5519 / CNRS UGA G-INP, Grenoble, France |
---|
62 | % http://www.legi.grenoble-inp.fr |
---|
63 | % Joel.Sommeria - Joel.Sommeria (A) univ-grenoble-alpes.fr |
---|
64 | % |
---|
65 | % This file is part of the toolbox UVMAT. |
---|
66 | % |
---|
67 | % UVMAT is free software; you can redistribute it and/or modify |
---|
68 | % it under the terms of the GNU General Public License as published |
---|
69 | % by the Free Software Foundation; either version 2 of the license, |
---|
70 | % or (at your option) any later version. |
---|
71 | % |
---|
72 | % UVMAT is distributed in the hope that it will be useful, |
---|
73 | % but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
74 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
75 | % GNU General Public License (see LICENSE.txt) for more details. |
---|
76 | %======================================================================= |
---|
77 | |
---|
78 | function ParamOut=particle_tracking(Param) |
---|
79 | |
---|
80 | %% set the input elements needed on the GUI series when the action is selected in the menu ActionName |
---|
81 | if isstruct(Param) && isequal(Param.Action.RUN,0) |
---|
82 | % general settings of the GUI: |
---|
83 | ParamOut.AllowInputSort='off';% allow alphabetic sorting of the list of input file SubDir (options 'off'/'on', 'off' by default) |
---|
84 | ParamOut.WholeIndexRange='off';% prescribes the file index ranges from min to max (options 'off'/'on', 'off' by default) |
---|
85 | ParamOut.NbSlice='off'; %nbre of slices ('off' by default) |
---|
86 | ParamOut.VelType='off';% menu for selecting the velocity type (options 'off'/'one'/'two', 'off' by default) |
---|
87 | ParamOut.FieldName='off';% menu for selecting the field (s) in the input file(options 'off'/'one'/'two', 'off' by default) |
---|
88 | ParamOut.FieldTransform = 'off';%can use a transform function |
---|
89 | ParamOut.ProjObject='off';%can use projection object(option 'off'/'on', |
---|
90 | ParamOut.Mask='off';%can use mask option (option 'off'/'on', 'off' by default) |
---|
91 | ParamOut.OutputDirExt='.track';%set the output dir extension |
---|
92 | ParamOut.OutputFileMode='NbSlice';% '=NbInput': 1 output file per input file index, '=NbInput_i': 1 file per input file index i, '=NbSlice': 1 file per slice |
---|
93 | filecell=get_file_series(Param);%check existence of the first input file |
---|
94 | if ~exist(filecell{1,1},'file') |
---|
95 | msgbox_uvmat('WARNING','the first input file does not exist') |
---|
96 | end |
---|
97 | % parameters specific to the function 'particle_tracking' |
---|
98 | Par.Nblock=10;%size of image subblocks for background determination, =[]: no sublock |
---|
99 | Par.ThreshLum=70;% luminosity threshold for particle detection, < 0 for black particles, >0 for white particles |
---|
100 | ParamOut.ActionInput=Par; |
---|
101 | return |
---|
102 | end |
---|
103 | |
---|
104 | %%%%%%%%%%%% STANDARD RUN PART %%%%%%%%%%%% |
---|
105 | ParamOut=[]; |
---|
106 | %% read input parameters from an xml file if input is a file name (batch mode) |
---|
107 | checkrun=1; |
---|
108 | if ischar(Param) |
---|
109 | Param=xml2struct(Param);% read Param as input file (batch case) |
---|
110 | checkrun=0; |
---|
111 | end |
---|
112 | hseries=findobj(allchild(0),'Tag','series'); |
---|
113 | RUNHandle=findobj(hseries,'Tag','RUN');%handle of RUN button in GUI series |
---|
114 | WaitbarHandle=findobj(hseries,'Tag','Waitbar');%handle of waitbar in GUI series |
---|
115 | |
---|
116 | %% define the directory for result file |
---|
117 | OutputDir=[Param.OutputSubDir Param.OutputDirExt]; |
---|
118 | |
---|
119 | %% root input file(s) name, type and index series |
---|
120 | RootPath=Param.InputTable{1,1}; |
---|
121 | RootFile=Param.InputTable{1,3}; |
---|
122 | SubDir=Param.InputTable{1,2}; |
---|
123 | NomType=Param.InputTable{1,4}; |
---|
124 | FileExt=Param.InputTable{1,5}; |
---|
125 | [filecell,i1_series,i2_series,j1_series,j2_series]=get_file_series(Param); |
---|
126 | %%%%%%%%%%%% |
---|
127 | % The cell array filecell is the list of input file names, while |
---|
128 | % filecell{iview,fileindex}: |
---|
129 | % iview: line in the table corresponding to a given file series |
---|
130 | % fileindex: file index within the file series, |
---|
131 | % i1_series(iview,ref_j,ref_i)... are the corresponding arrays of indices i1,i2,j1,j2, depending on the input line iview and the two reference indices ref_i,ref_j |
---|
132 | % i1_series(iview,fileindex) expresses the same indices as a 1D array in file indices |
---|
133 | %%%%%%%%%%%% |
---|
134 | nbview=numel(i1_series);%number of input file series (lines in InputTable) |
---|
135 | nbfield_j=size(i1_series{1},1); %nb of fields for the j index (bursts or volume slices) |
---|
136 | nbfield_i=size(i1_series{1},2); %nb of fields for the i index |
---|
137 | nbfield=nbfield_j*nbfield_i; %total number of fields |
---|
138 | |
---|
139 | %% frame index for movie or multimage file input |
---|
140 | if ~isempty(j1_series{1}) |
---|
141 | frame_index=j1_series{1}; |
---|
142 | else |
---|
143 | frame_index=i1_series{1}; |
---|
144 | end |
---|
145 | |
---|
146 | %% check the input file type |
---|
147 | [FileInfo,VideoObject]=get_file_info(filecell{1,1}); |
---|
148 | FileType=FileInfo.FileType; |
---|
149 | ImageTypeOptions={'image','multimage','mmreader','video','cine_phantom'}; |
---|
150 | if isempty(find(strcmp(FileType,ImageTypeOptions))) |
---|
151 | disp('input file not images') |
---|
152 | return |
---|
153 | end |
---|
154 | |
---|
155 | %% calibration data and timing: read the ImaDoc files |
---|
156 | [XmlData,NbSlice_calib,time,errormsg]=read_multimadoc(RootPath,SubDir,RootFile,FileExt,i1_series,i2_series,j1_series,j2_series); |
---|
157 | |
---|
158 | %%%%%%%%%%%% SPECIFIC PART (to edit) %%%%%%%%%%%% |
---|
159 | %filter for particle center of mass(luminosity) |
---|
160 | Nblock=Param.ActionInput.Nblock; |
---|
161 | ThreshLum=Param.ActionInput.ThreshLum;% luminosity threshold for particle detection, < 0 for black particles, >0 for white particles |
---|
162 | %AbsThreshold=30; %threshold below which a pixel is considered belonging to a float |
---|
163 | % |
---|
164 | hh=ones(5,5); |
---|
165 | hh(1,1)=0; |
---|
166 | hh(1,5)=0;% sum luminosity on the 5x5 domain without corners |
---|
167 | hh(5,1)=0; |
---|
168 | hh(5,5)=0; |
---|
169 | hdx=[-2:1:2]; |
---|
170 | hdy=[-2:1:2]; |
---|
171 | [hdX,hdY]=meshgrid(hdx,hdy); |
---|
172 | hdX(1,1)=0; |
---|
173 | hdX(1,5)=0;% sum luminosity on the 5x5 domain -corners |
---|
174 | hdX(5,1)=0; |
---|
175 | hdX(5,5)=0; |
---|
176 | hdY(1,1)=0; |
---|
177 | hdY(1,5)=0;% sum luminosity on the 5x5 domain -corners |
---|
178 | hdY(5,1)=0; |
---|
179 | hdY(5,5)=0; |
---|
180 | |
---|
181 | %% mask to reduce the working area (optional) |
---|
182 | CheckMask=0; |
---|
183 | if isfield(Param,'CheckMask') && isequal(Param.CheckMask,1) |
---|
184 | [maskname,TestMask]=name_generator([filebase '_1mask'],1,1,'.png','_i'); |
---|
185 | MaskIma=imread(maskname); |
---|
186 | Mask=MaskIma>=200;%=1 for good points, 0 for bad |
---|
187 | CheckMask=1; |
---|
188 | end |
---|
189 | |
---|
190 | %%%%%% MAIN LOOP ON FRAMES %%%%%% |
---|
191 | for ifile=1:nbfield |
---|
192 | if checkrun |
---|
193 | update_waitbar(WaitbarHandle,ifile/nbfield) |
---|
194 | if ~isempty(RUNHandle) &&ishandle(RUNHandle) && ~strcmp(get(RUNHandle,'BusyAction'),'queue') |
---|
195 | disp('program stopped by user') |
---|
196 | return |
---|
197 | end |
---|
198 | end |
---|
199 | j1=1; |
---|
200 | if ~isempty(j1_series)&&~isequal(j1_series,{[]}) |
---|
201 | j1=j1_series{1}(ifile); |
---|
202 | end |
---|
203 | filename=fullfile_uvmat(RootPath,SubDir,RootFile,FileExt,NomType,i1_series{1}(ifile),[],j1); |
---|
204 | A=read_image(filename,FileType,VideoObject,frame_index(ifile));% read the current frame |
---|
205 | if ndims(A)==3;%color images |
---|
206 | A=sum(double(A),3);% take the sum of color components |
---|
207 | end |
---|
208 | if ThreshLum<0 |
---|
209 | A=max(max(A))-A;%take the negative |
---|
210 | end |
---|
211 | if CheckMask |
---|
212 | A=A.*Mask; |
---|
213 | end |
---|
214 | if isempty(Nblock) |
---|
215 | A=A-min(min(A));%substract absolute mean |
---|
216 | else |
---|
217 | Aflagmin=sparse(imregionalmin(A));%Amin=1 for local image minima |
---|
218 | Amin=A.*Aflagmin;%values of A at local minima |
---|
219 | % local background: find all the local minima in image subblocks |
---|
220 | sumblock= inline('sum(sum(x(:)))'); |
---|
221 | Backgi=blkproc(Amin,[Nblock Nblock],sumblock);% take the sum in blocks |
---|
222 | Bmin=blkproc(Aflagmin,[Nblock Nblock],sumblock);% find the number of minima in blocks |
---|
223 | Backgi=Backgi./Bmin; % find the average of minima in blocks |
---|
224 | % Backg=Backg+Backgi; |
---|
225 | Backg=Backgi; |
---|
226 | A=A-imresize(Backg/nburst(1),size(A),'bilinear');% interpolate to the initial size image and substract |
---|
227 | end |
---|
228 | Aflagmax=sparse(imregionalmax(A));%find local maxima |
---|
229 | Plum=imfilter(A,hh);% sum A on 5x% domains |
---|
230 | Plum=Aflagmax.*Plum;% Plum gives the particle luminosity at each particle location, 0 elsewhere |
---|
231 | %make statistics on particles,restricted to a subdomain Sub |
---|
232 | [Js,Is,lum]=find(Plum);%particle luminosity |
---|
233 | Plum=(Plum>ThreshLum).*Plum;% introduce a threshold for particle luminosity |
---|
234 | Aflagmax=Aflagmax.*(Plum>ThreshLum); |
---|
235 | [Js,Is,lum]=find(Plum);%particle luminosity |
---|
236 | nbtotal=size(Is) |
---|
237 | nbtotal=nbtotal(1); |
---|
238 | %particle size |
---|
239 | Parea=Aflagmax.*(Plum./A); %particle luminosity/max luminosity=area |
---|
240 | Pdiam=sqrt(Parea); |
---|
241 | [Js,Is,diam]=find(Pdiam);%particle location |
---|
242 | |
---|
243 | %%%%%%%%%%%%%%%%%%%%% |
---|
244 | |
---|
245 | %nbre of particles per block |
---|
246 | % nbpart=blkproc(Aflagmax,[Nblock Nblock],sumblock);% |
---|
247 | % npb=size(nbpart); |
---|
248 | % rangxb=[0.5 (npb(2)-0.5)]*Nblock; % pixel x coordinates for image display |
---|
249 | % rangyb=[(npb(1)-0.5) 0.5]*Nblock; % pixel y coordinates for image display |
---|
250 | % image(rangxb,rangyb,nbpart); |
---|
251 | |
---|
252 | % get the particle centre of mass |
---|
253 | dx=imfilter(A,hdX); |
---|
254 | dy=imfilter(A,-hdY); |
---|
255 | dx=Aflagmax.*(dx./Plum); |
---|
256 | dy=Aflagmax.*(dy./Plum); |
---|
257 | dx=dx/pxcm; |
---|
258 | dy=dy/pycm; |
---|
259 | I=([1:npxy(2)]-0.5)/pxcm; %x pos |
---|
260 | J=([npxy(1):-1:1]-0.5)/pycm; %y pos |
---|
261 | [Ipos,Jpos]=meshgrid(I,J); |
---|
262 | Ipos=reshape(Ipos,1,npxy(2)*npxy(1)); |
---|
263 | Jpos=reshape(Jpos,1,npxy(2)*npxy(1)); |
---|
264 | dx=reshape(dx,1,npxy(2)*npxy(1)); |
---|
265 | dy=reshape(dy,1,npxy(2)*npxy(1)); |
---|
266 | Aflag=reshape(Aflagmax,1,npxy(2)*npxy(1)); |
---|
267 | ind=find(Aflag);% select particle positions |
---|
268 | XPart{ifile}=Ipos(ind)+dx(ind); |
---|
269 | YPart{ifile}=Jpos(ind)+dy(ind); |
---|
270 | end |
---|
271 | hold off |
---|
272 | |
---|
273 | size(XPart{1}) |
---|
274 | |
---|
275 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
276 | %Trajectoires |
---|
277 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
278 | for ifile=1:nbfield |
---|
279 | |
---|
280 | [XPart{ifile},YPart{ifile}]=phys_XYZ(Calib,XPart{ifile},YPart{ifile}); |
---|
281 | |
---|
282 | end |
---|
283 | |
---|
284 | if nbfield>2 |
---|
285 | figpart=figure |
---|
286 | hold on |
---|
287 | plot(XPart{1}(:),YPart{1}(:),'r+') |
---|
288 | plot(XPart{2}(:),YPart{2}(:),'b+') |
---|
289 | plot(XPart{3}(:),YPart{3}(:),'y+') |
---|
290 | legend('particules image 1','particules image 2','particules image 3'); |
---|
291 | xlabel('x (cm)'); |
---|
292 | ylabel('y (cm)'); |
---|
293 | title('Position des particules') |
---|
294 | else |
---|
295 | figpart=figure |
---|
296 | hold on |
---|
297 | plot(XPart{1}(:),YPart{1}(:),'r+') |
---|
298 | plot(XPart{2}(:),YPart{2}(:),'b+') |
---|
299 | legend('particules image 1','particules image 2'); |
---|
300 | xlabel('x (cm)'); |
---|
301 | ylabel('y (cm)'); |
---|
302 | title('Position des particules') |
---|
303 | end |
---|
304 | |
---|
305 | % prompt={'Ymin (cm)','Ymax( cm)','Xmin (cm)','Xmax (cm)'}; |
---|
306 | % Rep=inputdlg(prompt,'Experiment'); |
---|
307 | % Ymin=str2double(Rep(1)); |
---|
308 | % Ymax=str2double(Rep(2)); |
---|
309 | % Xmin=str2double(Rep(3)); |
---|
310 | % Xmax=str2double(Rep(4)); |
---|
311 | |
---|
312 | Ymin=6; |
---|
313 | Ymax=14; |
---|
314 | Xmin=15; |
---|
315 | Xmax=35; |
---|
316 | |
---|
317 | plot(Xmin,Ymin,'g+') |
---|
318 | plot(Xmin,Ymax,'g+') |
---|
319 | plot(Xmax,Ymin,'g+') |
---|
320 | plot(Xmax,Ymax,'g+') |
---|
321 | |
---|
322 | |
---|
323 | for ima=2:nbfield |
---|
324 | t{1}=0*ones(size(XPart{1},2),1); |
---|
325 | burst(1)=0; |
---|
326 | burst(2)=0.018; |
---|
327 | burst(3)=0.036; |
---|
328 | % nburst=strcat('burst',num2str(ima-1),'-',num2str(ima),' (s)'); |
---|
329 | % prompt={'burst (s)'}; |
---|
330 | % Rep=inputdlg(prompt,nburst); |
---|
331 | % burst(ima)=str2double(Rep(1)); |
---|
332 | t{ima}=(burst(ima)+burst(ima-1))*ones(size(XPart{ima},2),1); |
---|
333 | end |
---|
334 | |
---|
335 | |
---|
336 | |
---|
337 | for ima=1:nbfield |
---|
338 | |
---|
339 | IndY{ima}=find(YPart{ima}>Ymin & YPart{ima}<Ymax & XPart{ima}>Xmin & XPart{ima}<Xmax); |
---|
340 | XPart{ima}=XPart{ima}(IndY{ima}); |
---|
341 | YPart{ima}=YPart{ima}(IndY{ima}); |
---|
342 | |
---|
343 | |
---|
344 | end |
---|
345 | |
---|
346 | |
---|
347 | |
---|
348 | %%%%%%%%%%%%%%%%%%%%%%% |
---|
349 | % Calcul de v1 |
---|
350 | %%%%%%%%%%%%%%%%%%%%%%% |
---|
351 | |
---|
352 | for i=1:size(XPart{1},2) |
---|
353 | MatPos{1}(i,1)=XPart{1}(i); |
---|
354 | MatPos{1}(i,2)=YPart{1}(i); |
---|
355 | MatPos{1}(i,3)=t{1}(i); |
---|
356 | %MatPos{1}(i,4)=i; |
---|
357 | end |
---|
358 | |
---|
359 | for j=1:size(XPart{2},2)-1 |
---|
360 | MatPos{1}(j+size(XPart{1},2),1)=XPart{2}(j); |
---|
361 | MatPos{1}(j+size(XPart{1},2),2)=YPart{2}(j); |
---|
362 | MatPos{1}(j+size(XPart{1},2),3)=t{2}(j); |
---|
363 | %MatPos{1}(j,4)=j+size(XPart{1},2); |
---|
364 | end |
---|
365 | |
---|
366 | % Dmax=inputdlg('Entrer la distance maximum (0.25 cm)','dmax (cm)',1) |
---|
367 | % dmax=str2num(Dmax{1}); |
---|
368 | dmax=0.23; |
---|
369 | |
---|
370 | result{1}=track(MatPos{1},dmax); |
---|
371 | |
---|
372 | izero=1; |
---|
373 | for itest=1:1:size(result{1},1)-1 |
---|
374 | if result{1}(itest+1,4)==result{1}(itest,4) |
---|
375 | vitu{1}(izero,1)=(result{1}(itest+1,1)-result{1}(itest,1))/burst(2); |
---|
376 | vitu{1}(izero,2)=result{1}(itest,4); |
---|
377 | vitv{1}(izero,1)=(result{1}(itest+1,2)-result{1}(itest,2))/burst(2); |
---|
378 | vitv{1}(izero,2)=result{1}(itest,4); |
---|
379 | MatPos{2}(izero,1)=result{1}(itest,1); |
---|
380 | MatPos{2}(izero,2)=result{1}(itest,2); |
---|
381 | izero=izero+1; |
---|
382 | end |
---|
383 | end |
---|
384 | |
---|
385 | |
---|
386 | vitfu{1}=vitu{1}; |
---|
387 | vitfv{1}=vitv{1}; |
---|
388 | |
---|
389 | |
---|
390 | %%%%%%%%%%%%%%%%%%%%%%% |
---|
391 | % Calcul de vi |
---|
392 | %%%%%%%%%%%%%%%%%%%%%%% |
---|
393 | |
---|
394 | |
---|
395 | if nbfield>2 |
---|
396 | for ima=2:nbfield-1 |
---|
397 | |
---|
398 | for i=1:size(MatPos{ima},1) |
---|
399 | MatPos{ima+1}(i,1)=MatPos{ima}(i,1)+(burst(ima+1)*vitfu{ima-1}(i)); |
---|
400 | MatPos{ima+1}(i,2)=MatPos{ima}(i,2)+(burst(ima+1)*vitfv{ima-1}(i)); |
---|
401 | MatPos{ima+1}(i,3)=t{ima}(i); |
---|
402 | end |
---|
403 | |
---|
404 | for j=1:size(XPart{ima+1},2)-1 |
---|
405 | MatPos{ima+1}(j+size(MatPos{ima},1),1)=XPart{ima+1}(j); |
---|
406 | MatPos{ima+1}(j+size(MatPos{ima},1),2)=YPart{ima+1}(j); |
---|
407 | MatPos{ima+1}(j+size(MatPos{ima},1),3)=t{ima+1}(j); |
---|
408 | end |
---|
409 | |
---|
410 | |
---|
411 | result{ima}=track(MatPos{ima+1},0.15); |
---|
412 | |
---|
413 | izero=1; |
---|
414 | for itest=1:1:size(result{ima},1)-1 |
---|
415 | if result{ima}(itest+1,4)==result{ima}(itest,4) |
---|
416 | vitu{ima}(izero,1)=(result{ima}(itest+1,1)-result{ima}(itest,1))/burst(ima+1); |
---|
417 | vitu{ima}(izero,2)=result{ima}(itest,4); |
---|
418 | vitv{ima}(izero,1)=(result{ima}(itest+1,2)-result{ima}(itest,2))/burst(ima+1); |
---|
419 | vitv{ima}(izero,2)=result{ima}(itest,4); |
---|
420 | MatPos{ima+2}(izero,1)=result{ima}(itest,1); |
---|
421 | MatPos{ima+2}(izero,2)=result{ima}(itest,2); |
---|
422 | izero=izero+1; |
---|
423 | end |
---|
424 | end |
---|
425 | |
---|
426 | i=vitu{ima}(1,2):1:vitu{ima}(end,2) |
---|
427 | |
---|
428 | vitfu{ima}(:,1)=vitfu{ima-1}(i,1)+vitu{ima}(:,1); |
---|
429 | vitfv{ima}(:,1)=vitfv{ima-1}(i,1)+vitv{ima}(:,1); |
---|
430 | vitfu{ima}(:,2)=vitu{ima}(:,2); |
---|
431 | vitfv{ima}(:,2)=vitv{ima}(:,2); |
---|
432 | |
---|
433 | vitfu{ima-1}=vitfu{ima-1}(i,1); |
---|
434 | vitfu{ima-1}(:,2)=i; |
---|
435 | vitfv{ima-1}=vitfv{ima-1}(i,1); |
---|
436 | vitfv{ima-1}(:,2)=i; |
---|
437 | i=1:1:size(vitfu{ima-1},1) |
---|
438 | xpos=MatPos{2}(i,1) |
---|
439 | ypos=MatPos{2}(i,2) |
---|
440 | end |
---|
441 | end |
---|
442 | |
---|
443 | |
---|
444 | |
---|
445 | figure |
---|
446 | hold on |
---|
447 | plot(MatPos{1}(:,1),MatPos{1}(:,2),'r+') |
---|
448 | plot(MatPos{2}(:,1),MatPos{2}(:,2),'b+') |
---|
449 | plot(MatPos{4}(:,1),MatPos{4}(:,2),'y+') |
---|
450 | quiver(xpos(:),ypos(:),vitfu{1}(:,1),vitfv{1}(:,1),'g') |
---|
451 | quiver(MatPos{4}(:,1),MatPos{4}(:,2),vitfu{2}(:,1),vitfv{2}(:,1),'k') |
---|
452 | legend('particules image 1','particules image 2', 'particules image 3','vitesse 1-2 (cm/s)','vitesse 2-3 (cm/s)'); |
---|
453 | xlabel('x (cm)'); |
---|
454 | ylabel('y (cm)'); |
---|
455 | title('Position et vitesse (cm/s) des particules') |
---|
456 | |
---|
457 | |
---|
458 | for i=1:size(vitfu{end},1) |
---|
459 | vitfuadd(i)=0; |
---|
460 | vitfvadd(i)=0; |
---|
461 | end |
---|
462 | |
---|
463 | |
---|
464 | |
---|
465 | for i=1:1:size(vitfu{end}(:,1)) |
---|
466 | |
---|
467 | for j=1:nbfield-1 |
---|
468 | vitfuadd(i)= vitfuadd(i)+vitfu{j}(i,1); |
---|
469 | vitfvadd(i)= vitfvadd(i)+vitfv{j}(i,1); |
---|
470 | xpos1(i)=MatPos{1}(i,1); |
---|
471 | ypos1(i)=MatPos{1}(i,2); |
---|
472 | xpos2(i)=MatPos{2}(i,1); |
---|
473 | ypos2(i)=MatPos{2}(i,2); |
---|
474 | |
---|
475 | end |
---|
476 | end |
---|
477 | sizexpos1=size(xpos1) |
---|
478 | |
---|
479 | vitfumoy=vitfuadd./(nbfield-1) |
---|
480 | vitfvmoy=vitfvadd./(nbfield-1) |
---|
481 | |
---|
482 | testresult1=result{1} |
---|
483 | testresult2=result{2} |
---|
484 | |
---|
485 | if nbfield>2 |
---|
486 | figure |
---|
487 | hold on |
---|
488 | plot(MatPos{1}(:,1),MatPos{1}(:,2),'r+') |
---|
489 | plot(MatPos{2}(:,1),MatPos{2}(:,2),'b+') |
---|
490 | quiver(xpos2(:),ypos2(:),vitfumoy(:),vitfvmoy(:),'g') |
---|
491 | legend('particules image 1','particules image 2', 'vitesse moyenne (cm/s)'); |
---|
492 | xlabel('x (cm)'); |
---|
493 | ylabel('y (cm)'); |
---|
494 | title('Position et vitesse (cm/s) des particules') |
---|
495 | |
---|
496 | else |
---|
497 | |
---|
498 | figure |
---|
499 | hold on |
---|
500 | plot(MatPos{1}(:,1),MatPos{1}(:,2),'r+') |
---|
501 | plot(MatPos{2}(:,1),MatPos{2}(:,2),'b+') |
---|
502 | quiver(MatPos{2}(:,1),MatPos{2}(:,2),vitfu{1}(:),vitfv{1}(:),'g') |
---|
503 | legend('particules image 1','particules image 2','vitesse 1-2 (cm/s)'); |
---|
504 | xlabel('x (cm)'); |
---|
505 | ylabel('y (cm)'); |
---|
506 | title('Position et vitesse (cm/s) des particules') |
---|
507 | |
---|
508 | vitfumoy=vitfu{1}; |
---|
509 | vitfvmoy=vitfv{1}; |
---|
510 | |
---|
511 | end |
---|
512 | |
---|
513 | VitData.NbDim=2; |
---|
514 | VitData.NbCoord=2; |
---|
515 | VitData.CoordType='phys'; |
---|
516 | VitData.dt=0.0185; |
---|
517 | VitData.CoordUnit='cm'; |
---|
518 | VitData.Z=0; |
---|
519 | VitData.ListDimName={'nb_vectors'}; |
---|
520 | VitData.DimValue=size(vitfumoy,2); |
---|
521 | VitData.ListVarName={'X' 'Y' 'U' 'V' 'F'}; |
---|
522 | VitData.VarDimIndex={[1] [1] [1] [1] [1]}; |
---|
523 | VitData.ListVarAttribute={'Role'}; |
---|
524 | VitData.Role={'coord_x' 'coord_y' 'vector_x' 'vector_y' 'warnflag'}; |
---|
525 | |
---|
526 | if nbfield>2 |
---|
527 | VitData.X=size(MatPos{4},1); |
---|
528 | VitData.Y=size(MatPos{4},2); |
---|
529 | else |
---|
530 | VitData.X=size(MatPos{2},1); |
---|
531 | VitData.Y=size(MatPos{2},2); |
---|
532 | end |
---|
533 | |
---|
534 | VitData.U=size(vitfumoy,2); |
---|
535 | VitData.V=size(vitfvmoy,2); |
---|
536 | VitData.Style='plane'; |
---|
537 | VitData.Time=[198.5203 198.5203]; |
---|
538 | VitData.Action=Series.Action; |
---|
539 | |
---|
540 | if nbfield>2 |
---|
541 | VitData.X=MatPos{4}(:,1)'; |
---|
542 | VitData.Y=MatPos{4}(:,2)'; |
---|
543 | else |
---|
544 | VitData.X=MatPos{2}(:,1)'; |
---|
545 | VitData.Y=MatPos{2}(:,2)'; |
---|
546 | end |
---|
547 | |
---|
548 | VitData.U=vitfumoy(:)'; |
---|
549 | VitData.V=vitfvmoy(:)'; |
---|
550 | |
---|
551 | if length(VitData.ListVarName) >= 4 & isequal(VitData.ListVarName(1:4), {'X' 'Y' 'U' 'V'}) |
---|
552 | VitData.ListAttribute={'nb_coord','nb_dim','dt','pixcmx','pixcmy','hart','civ','fix'}; |
---|
553 | VitData.nb_coord=2; |
---|
554 | VitData.nb_dim=2; |
---|
555 | VitData.dt=0.018; |
---|
556 | VitData.absolut_time_T0=0; |
---|
557 | VitData.pixcmx=1; %pix per cm (1 by default) |
---|
558 | VitData.pixcmy=1; %pix per cm (1 by default) |
---|
559 | VitData.hart=0; |
---|
560 | if isequal(VitData.CoordType,'px') |
---|
561 | VitData.civ=1; |
---|
562 | else |
---|
563 | VitData.civ=0; |
---|
564 | end |
---|
565 | VitData.fix=0; |
---|
566 | VitData.ListVarName(1:4)={'vec_X' 'vec_Y' 'vec_U' 'vec_V'}; |
---|
567 | VitData.vec_X=VitData.X; |
---|
568 | VitData.vec_Y=VitData.Y; |
---|
569 | VitData.vec_U=VitData.U; |
---|
570 | VitData.vec_V=VitData.V; |
---|
571 | end |
---|
572 | currentdir=pwd;%store the current working directory |
---|
573 | [Path_ima,Name]=fileparts(filebase);%Path of the image files (.civ) |
---|
574 | cd(Path_ima);%move to the directory of the images: needed to create the result dir by 'mkdir' |
---|
575 | dircur=pwd; %current working directory |
---|
576 | [m1,m2,m3]=mkdir('TRACK_test') |
---|
577 | cd(currentdir) |
---|
578 | [filename_nc,idetect]=name_generator(filebase,num_i1(1),num_j1(1),'.nc','_i_j1-j2',1,num_i1(1),num_j1(2),'TRACK_test') |
---|
579 | error=struct2nc(filename_nc,VitData); %save result file |
---|
580 | if isequal(error,0) |
---|
581 | [filename_nc ' written'] |
---|
582 | else |
---|
583 | warndlg_uvmat(error,'ERROR') |
---|
584 | end |
---|
585 | |
---|