1 | %'turb_correlation_time': calculate the time correlation function at each point |
---|
2 | %------------------------------------------------------------------------ |
---|
3 | % function ParamOut=turb_correlation_time(Param) |
---|
4 | % |
---|
5 | %%%%%%%%%%% GENERAL TO ALL SERIES ACTION FCTS %%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
6 | % |
---|
7 | %OUTPUT |
---|
8 | % ParamOut: sets options in the GUI series.fig needed for the function |
---|
9 | % |
---|
10 | %INPUT: |
---|
11 | % In run mode, the input parameters are given as a Matlab structure Param copied from the GUI series. |
---|
12 | % In batch mode, Param is the name of the corresponding xml file containing the same information |
---|
13 | % when Param.Action.RUN=0 (as activated when the current Action is selected |
---|
14 | % in series), the function ouput paramOut set the activation of the needed GUI elements |
---|
15 | % |
---|
16 | % Param contains the elements:(use the menu bar command 'export/GUI config' in series to |
---|
17 | % see the current structure Param) |
---|
18 | % .InputTable: cell of input file names, (several5.804 lines for multiple input) |
---|
19 | % each line decomposed as {RootPath,SubDir,Rootfile,NomType,Extension} |
---|
20 | % .OutputSubDir: name of the subdirectory for data outputs |
---|
21 | % .OutputDirExt: directory extension for data outputs |
---|
22 | % .Action: .ActionName: name of the current activated function |
---|
23 | % .ActionPath: path of the current activated function |
---|
24 | % .ActionExt: fct extension ('.m', Matlab fct, '.sh', compiled Matlab fct |
---|
25 | % .RUN =0 for GUI input, =1 for function activation |
---|
26 | % .RunMode='local','background', 'cluster': type of function use |
---|
27 | % 900 |
---|
28 | % .IndexRange: set the file or frame indices on which the action must be performseriesed |
---|
29 | % .FieldTransform: .TransformName: name of the select39ed transform function |
---|
30 | % .TransformPath: path of the selected transform function |
---|
31 | % .InputFields: sub structure describing the input fields withfields |
---|
32 | % .FieldName: name(s) of the field |
---|
33 | % .VelType: velocity type |
---|
34 | % .FieldName_1: name of the second field in case of two input series |
---|
35 | % .VelType_1: velocity type of the second field in case of two input series |
---|
36 | % uvmat .Coord_y: name of y coordinate variable |
---|
37 | % .Coord_x: name of x coordinate variable |
---|
38 | % .ProjObject: %sub structure describing a projection object (read from ancillary GUI set_object) |
---|
39 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
40 | %======================================================================= |
---|
41 | % Copyright 2008-2022, LEGI UMR 5519 / CNRS UGA G-INP, Grenoble, France |
---|
42 | % http://www.legi.grenoble-inp.fr |
---|
43 | % Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr |
---|
44 | % |
---|
45 | % This file is part of the toolbox UVMAT. |
---|
46 | % |
---|
47 | % UVMAT is free software; you can redistribute it and/or modify |
---|
48 | % it under the terms of the GNU General Public License as published |
---|
49 | % by the Free Software Foundation; either version 2 of the license, |
---|
50 | % or (at your option) any later version. |
---|
51 | % |
---|
52 | % UVMAT is distributed in the hope that it will be useful, |
---|
53 | % but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
54 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
55 | % GNU General Public License (see LICENSE.txt) for more details. |
---|
56 | %======================================================================= |
---|
57 | |
---|
58 | function ParamOut=sliding_average(Param) |
---|
59 | |
---|
60 | %% set the input elements needed on the GUI series when the action is selected in the menu ActionName |
---|
61 | if isstruct(Param) && isequal(Param.Action.RUN,0) |
---|
62 | ParamOut.AllowInputSort='off';% allow alphabetic sorting of the list of input file SubDir (options 'off'/'on', 'off' by default) |
---|
63 | ParamOut.WholeIndexRange='off';% prescribes the file index ranges from min to mseriesax (options 'off'/'on', 'off' by default) |
---|
64 | ParamOut.NbSlice=1; %nbre of slices ('off' by default) |
---|
65 | ParamOut.VelType='off';% menu for selecting the velocity type (options 'off'/'one'/'two', 'off' by default) |
---|
66 | ParamOut.FieldName='one';% menu for selecting the field (s) in the input file(options 'off'/'one'/'two', 'off' by default) |
---|
67 | ParamOut.FieldTransform = 'on';%can use a transform function |
---|
68 | ParamOut.ProjObject='off';%can use projection object39(option 'off'/'on', |
---|
69 | ParamOut.Mask='off';%can use mask option (option 'off'/'on', 'off' by default) |
---|
70 | ParamOut.OutputDirExt='.tfilter';%set the output dir extension |
---|
71 | ParamOut.OutputFileMode='NbSlice';% '=NbInput': 1 output file per input file index, '=NbInput_i': 1 file per input file index i, '=NbSlice': 1 file per slice |
---|
72 | % filecell=get_file_series(Param);%check existence of the first input file |
---|
73 | % if ~exist(filecell{1,1},'file') |
---|
74 | % msgbox_uvmat('WARNING','the first input file does not exist') |
---|
75 | % end |
---|
76 | return |
---|
77 | end |
---|
78 | |
---|
79 | %%%%%%%%%%%% STANDARD PART %%%%%%%%%%%% |
---|
80 | ParamOut=[];%default output |
---|
81 | %% read input parameters from an xml file if input is a file name (batch mode) |
---|
82 | checkrun=1; |
---|
83 | if ischar(Param) |
---|
84 | Param=xml2struct(Param);% read Param as input file (batch case) |
---|
85 | checkrun=0; |
---|
86 | end |
---|
87 | |
---|
88 | hseries=findobj(allchild(0),'Tag','series'); |
---|
89 | RUNHandle=findobj(hseries,'Tag','RUN');%handle of RUN button in GUI series |
---|
90 | WaitbarHandle=findobj(hseries,'Tag','Waitbar');%handle of waitbar in GUI series |
---|
91 | |
---|
92 | %% define the directory for result file (with path=RootPath{1}) |
---|
93 | OutputDir=[Param.OutputSubDir Param.OutputDirExt]; |
---|
94 | |
---|
95 | %% root input file(s) name, type and index series |
---|
96 | RootPath=Param.InputTable(:,1); |
---|
97 | RootFile=Param.InputTable(:,3); |
---|
98 | SubDir=Param.InputTable(:,2); |
---|
99 | NomType=Param.InputTable(:,4); |
---|
100 | FileExt=Param.InputTable(:,5); |
---|
101 | [filecell,i1_series,i2_series,j1_series,j2_series]=get_file_series(Param); |
---|
102 | %%%%%%%%%%%% |
---|
103 | % The cell array filecell is the list of input file names, while |
---|
104 | % filecell{iview,fileindex}: |
---|
105 | % iview: line in the table corresponding to a given file series |
---|
106 | % fileindex: file index within the file series, |
---|
107 | % i1_series(iview,ref_j,ref_i)... are the corresponding arrays of indices i1,i2,j1,j2, depending on the input line iview and the two reference indices ref_i,ref_j |
---|
108 | % i1_series(iview,fileindex) expresses the same indices as a 1D array in file indices |
---|
109 | %%%%%%%%%%%% NbView=1 : a single input series |
---|
110 | NbView=numel(i1_series);%number of input file series (lines in InputTable) |
---|
111 | NbField_j=size(i1_series{1},1); %nb of fields for the j index (bursts or volume slices) |
---|
112 | NbField_i=size(i1_series{1},2); %nb of fields for the i index |
---|
113 | NbField=NbField_j*NbField_i; %total number of fields |
---|
114 | |
---|
115 | %% determine the file type on each line from the first input file |
---|
116 | ImageTypeOptions={'image','multimage','mmreader','video','cine_phantom'}; |
---|
117 | NcTypeOptions={'netcdf','civx','civdata'}; |
---|
118 | for iview=1:NbView |
---|
119 | if ~exist(filecell{iview,1}','file') |
---|
120 | msgbox_uvmat('ERROR',['the first input file ' filecell{iview,1} ' does not exist']) |
---|
121 | return |
---|
122 | end |
---|
123 | [FileInfo{iview},MovieObject{iview}]=get_file_info(filecell{iview,1}); |
---|
124 | FileType{iview}=FileInfo{iview}.FileType; |
---|
125 | CheckImage{iview}=~isempty(find(strcmp(FileType{iview},ImageTypeOptions)));% =1 for images |
---|
126 | CheckNc{iview}=~isempty(find(strcmp(FileType{iview},NcTypeOptions)));% =1 for netcdf files |
---|
127 | if ~isempty(j1_series{iview}) |
---|
128 | frame_index{iview}=j1_series{iview}; |
---|
129 | else |
---|
130 | frame_index{iview}=i1_series{iview}; |
---|
131 | end |
---|
132 | end |
---|
133 | |
---|
134 | %% calibration data and timing: read the ImaDoc files |
---|
135 | XmlData=[]; |
---|
136 | [XmlData,NbSlice_calib,time,errormsg]=read_multimadoc(RootPath,SubDir,RootFile,FileExt,i1_series,i2_series,j1_series,j2_series); |
---|
137 | if size(time,1)>1 |
---|
138 | diff_time=max(max(diff(time))); |
---|
139 | if diff_time>0 |
---|
140 | msgbox_uvmat('WARNING',['times of series differ by (max) ' num2str(diff_time)]) |
---|
141 | end |
---|
142 | end |
---|
143 | |
---|
144 | %% coordinate transform or other user defined transform |
---|
145 | transform_fct='';%default |
---|
146 | if isfield(Param,'FieldTransform')&&~isempty(Param.FieldTransform.TransformName) |
---|
147 | addpath(Param.FieldTransform.TransformPath) |
---|
148 | transform_fct=str2func(Param.FieldTransform.TransformName); |
---|
149 | rmpath(Param.FieldTransform.TransformPath) |
---|
150 | end |
---|
151 | |
---|
152 | %%%%%%%%%%%% END STANDARD PART %%%%%%%%%%%% |
---|
153 | % EDIT FROM HERE |
---|
154 | |
---|
155 | %% check the validity of input file types |
---|
156 | if CheckImage{1} |
---|
157 | FileExtOut='.png'; % write result as .png images for image inputs |
---|
158 | elseif CheckNc{1} |
---|
159 | FileExtOut='.nc';% write result as .nc files for netcdf inputs |
---|
160 | else |
---|
161 | msgbox_uvmat('ERROR',['invalid file type input ' FileType{1}]) |
---|
162 | return |
---|
163 | end |
---|
164 | |
---|
165 | |
---|
166 | %% settings for the output file |
---|
167 | NomTypeOut=nomtype2pair(NomType{1});% determine the index nomenclature type for the output file |
---|
168 | first_i=i1_series{1}(1); |
---|
169 | last_i=i1_series{1}(end); |
---|
170 | if isempty(j1_series{1})% if there is no second index j |
---|
171 | first_j=1;last_j=1; |
---|
172 | else |
---|
173 | first_j=j1_series{1}(1); |
---|
174 | last_j=j1_series{1}(end); |
---|
175 | end |
---|
176 | |
---|
177 | %% Set field names and velocity types |
---|
178 | InputFields{1}=[];%default (case of images)series |
---|
179 | if isfield(Param,'InputFields') |
---|
180 | InputFields{1}=Param.InputFields; |
---|
181 | end5.804 |
---|
182 | |
---|
183 | nbfiles=0; |
---|
184 | nbmissing=0; |
---|
185 | |
---|
186 | %% initialisation manip Coriolis |
---|
187 | char_index=regexp(SubDir{1},'waves_L1_'); |
---|
188 | switch(SubDir{1}(char_index+9)) |
---|
189 | case '1' |
---|
190 | amplitude=2.5 %oscillation amplitude |
---|
191 | T=24.46; |
---|
192 | t0=3 ;% dt=0.5 s, torus at its max x at the beginning of motion, i0=7 |
---|
193 | case '2' |
---|
194 | amplitude=5 %oscillation amplitude |
---|
195 | T=24.47; |
---|
196 | t0=8.5; % dt=1/3 s -> image index of starting motion = 26, % torus at its max x at the beginning of motion |
---|
197 | case '3' |
---|
198 | amplitude=10 %oscillation amplitude |
---|
199 | T=24.45; |
---|
200 | t0=6.5-T/2;% dt=0.25, torus at its minimum x at the beginning of motion |
---|
201 | case '4' |
---|
202 | amplitude=15 %oscillation amplitude |
---|
203 | T=24.48; |
---|
204 | t0=3.4; %dt=0.2 -> i0=18 image index of starting motion, % torus at its max x at the beginning of motion |
---|
205 | end |
---|
206 | %NbPeriod=2; %number of periods for the sliding average |
---|
207 | NbPeriod=4; %number of periods for the sliding average |
---|
208 | omega=2*2*pi/T;%harmonic |
---|
209 | Lscale=15;%diameter of the torus, length scale for normalisation |
---|
210 | Uscale=amplitude*omega; |
---|
211 | |
---|
212 | DataOut.ListGlobalAttribute= {'Conventions','Time'}; |
---|
213 | DataOut.Conventions='uvmat'; |
---|
214 | DataOut.ListVarName={'coord_y','coord_x','Umean','Vmean','Ucos','Vcos','Usin','Vsin','DUDXsin','DUDXcos','DUDYsin','DVDXsin','DVDXcos'... |
---|
215 | ,'DVDYsin','Ustokes','Vstokes'}; |
---|
216 | DataOut.VarDimName={'coord_y','coord_x',{'coord_y','coord_x'},{'coord_y','coord_x'},{'coord_y','coord_x'},{'coord_y','coord_x'},... |
---|
217 | {'coord_y','coord_x'},{'coord_y','coord_x'},{'coord_y','coord_x'},{'coord_y','coord_x'},{'coord_y','coord_x'},... |
---|
218 | {'coord_y','coord_x'},{'coord_y','coord_x'},{'coord_y','coord_x'},{'coord_y','coord_x'},{'coord_y','coord_x'}}; |
---|
219 | |
---|
220 | %%%%%%%%%%%%%%%% loop on field indices %%%%%%%%%%%%%%%% |
---|
221 | % First get time % |
---|
222 | [Data,tild,errormsg]=nc2struct(filecell{1,1}); |
---|
223 | Time_1=Data.Time; |
---|
224 | if ~isempty(errormsg) |
---|
225 | disp_uvmat('ERROR',errormsg,checkrun) |
---|
226 | return |
---|
227 | end |
---|
228 | [Data,tild,errormsg]=nc2struct(filecell{1,end}); |
---|
229 | Time_end=Data.Time; |
---|
230 | dt=(Time_end-Time_1)/(NbField-1); %time interval |
---|
231 | NpTime=round(NbPeriod*T/dt+1); |
---|
232 | |
---|
233 | OutputPath=fullfile(Param.OutputPath,num2str(Param.Experiment),num2str(Param.Device)); |
---|
234 | RootFileOut=RootFile{1}; |
---|
235 | NomTypeOut='_1'; |
---|
236 | %%%%%%%%%%%%%%%% loop on field indices %%%%%%%%%%%%%%%% |
---|
237 | disp('loop for filtering started') |
---|
238 | for index=1:NbField |
---|
239 | update_waitbar(WaitbarHandle,index/NbField) |
---|
240 | if ~isempty(RUNHandle)&& ~strcmp(get(RUNHandle,'BusyAction'),'queue') |
---|
241 | disp('program stopped by user') |
---|
242 | break |
---|
243 | end |
---|
244 | [Field,tild,~] = read_field(filecell{1,index},FileType{iview},InputFields{iview},frame_index{iview}(index)); |
---|
245 | |
---|
246 | %%%%%%%%%%% MAIN RUNNING OPERATIONS %%%%%%%%%%%% |
---|
247 | if index==1 %first field |
---|
248 | DataOut.coord_x=Field.coord_x/Lscale; |
---|
249 | DataOut.coord_y=Field.coord_y/Lscale; |
---|
250 | npy=numel(DataOut.coord_y); |
---|
251 | npx=numel(DataOut.coord_x); |
---|
252 | Umean=zeros(NpTime,npy,npx); |
---|
253 | Vmean=zeros(NpTime,npy,npx); |
---|
254 | Ucos=zeros(NpTime,npy,npx); |
---|
255 | Vcos=zeros(NpTime,npy,npx); |
---|
256 | Usin=zeros(NpTime,npy,npx); |
---|
257 | Vsin=zeros(NpTime,npy,npx); |
---|
258 | DUDXcos=zeros(NpTime,npy,npx); |
---|
259 | DUDXsin=zeros(NpTime,npy,npx); |
---|
260 | DUDYsin=zeros(NpTime,npy,npx); |
---|
261 | DVDXcos=zeros(NpTime,npy,npx); |
---|
262 | DVDXsin=zeros(NpTime,npy,npx); |
---|
263 | DVDYsin=zeros(NpTime,npy,npx); |
---|
264 | end |
---|
265 | Time(index)=Field.Time-t0;%time from the start of the motion |
---|
266 | Umean=circshift(Umean,[-1 0 0]); %shift U by ishift along the first index |
---|
267 | Vmean=circshift(Vmean,[-1 0 0]); %shift U by ishift along the first index |
---|
268 | Ucos=circshift(Ucos,[-1 0 0]); %shift U by ishift along the first index |
---|
269 | Vcos=circshift(Vcos,[-1 0 0]); %shift U by ishift along the first index |
---|
270 | Usin=circshift(Usin,[-1 0 0]); %shift U by ishift along the first index |
---|
271 | Vsin=circshift(Vsin,[-1 0 0]); %shift U by ishift along the first index |
---|
272 | DUDXcos=circshift(DUDXcos,[-1 0 0]); |
---|
273 | DUDXsin=circshift(DUDXsin,[-1 0 0]); |
---|
274 | DUDYsin=circshift(DUDYsin,[-1 0 0]); |
---|
275 | DVDXcos=circshift(DVDXcos,[-1 0 0]); |
---|
276 | DVDXsin=circshift(DVDXsin,[-1 0 0]); |
---|
277 | DVDYsin=circshift(DVDYsin,[-1 0 0]); |
---|
278 | Umean(end,:,:)=Field.U; |
---|
279 | Vmean(end,:,:)=Field.V; |
---|
280 | Ucos(end,:,:)=Field.U*cos(omega*Time(index)); |
---|
281 | Vcos(end,:,:)=Field.V*cos(omega*Time(index)); |
---|
282 | Usin(end,:,:)=Field.U*sin(omega*Time(index)); |
---|
283 | Vsin(end,:,:)=Field.V*sin(omega*Time(index)); |
---|
284 | DUDXcos(end,:,:)=Field.DUDX*cos(omega*Time(index)); |
---|
285 | DUDXsin(end,:,:)=Field.DUDX*sin(omega*Time(index)); |
---|
286 | DUDYsin(end,:,:)=Field.DUDY*sin(omega*Time(index));% ParamOut=[];%default output |
---|
287 | |
---|
288 | DVDXcos(end,:,:)=Field.DVDX*cos(omega*Time(index)); |
---|
289 | DVDXsin(end,:,:)=Field.DVDX*sin(omega*Time(index)); |
---|
290 | DVDYsin(end,:,:)=Field.DVDY*sin(omega*Time(index)); |
---|
291 | DataOut.Time=(Time(index)-(NpTime-1)*dt/2)/T;%time inperiods from the beginning of the oscillation (torus at max abscissa) |
---|
292 | DataOut.Umean=(1/Uscale)*squeeze(nanmean(Umean,1)); |
---|
293 | DataOut.Vmean=(1/Uscale)*squeeze(nanmean(Vmean,1)); |
---|
294 | DataOut.Ucos=2*(1/Uscale)*squeeze(nanmean(Ucos,1)); |
---|
295 | DataOut.Vcos=2*(1/Uscale)*squeeze(nanmean(Vcos,1)); |
---|
296 | DataOut.Usin=2*(1/Uscale)*squeeze(nanmean(Usin,1)); |
---|
297 | DataOut.Vsin=2*(1/Uscale)*squeeze(nanmean(Vsin,1)); |
---|
298 | DataOut.DUDXcos=2*squeeze(nanmean(DUDXcos,1)); |
---|
299 | DataOut.DUDXsin=2*squeeze(nanmean(DUDXsin,1)); |
---|
300 | DataOut.DUDYsin=2*squeeze(nanmean(DUDYsin,1)); |
---|
301 | DataOut.DVDXcos=2*squeeze(nanmean(DVDXcos,1)); |
---|
302 | DataOut.DVDXsin=2*squeeze(nanmean(DVDXsin,1)); |
---|
303 | DataOut.DVDYsin=2*squeeze(nanmean(DVDYsin,1)); |
---|
304 | DataOut.Ustokes=(1/omega)*(1/Uscale)*(DataOut.Ucos.*DataOut.DUDXsin+DataOut.Vcos.*DataOut.DUDYsin); |
---|
305 | DataOut.Vstokes=(1/omega)*(1/Uscale)*(DataOut.Ucos.*DataOut.DVDXsin+DataOut.Vcos.*DataOut.DVDYsin); |
---|
306 | |
---|
307 | % writing the result file as netcdf file |
---|
308 | i1=i1_series{1}(index); |
---|
309 | OutputFile=fullfile_uvmat(OutputPath,OutputDir,RootFileOut,'.nc',NomTypeOut,i1); |
---|
310 | errormsg=struct2nc(OutputFile, DataOut); |
---|
311 | if isempty(errormsg) |
---|
312 | disp([OutputFile ' written']) |
---|
313 | else |
---|
314 | disp(errormsg) |
---|
315 | end |
---|
316 | end |
---|
317 | |
---|