source: trunk/src/toolbox_calib/comp_distortion_oulu.m @ 919

Last change on this file since 919 was 908, checked in by g7moreau, 9 years ago
  • Update Copyright to 2015
File size: 2.1 KB
Line 
1%=======================================================================
2% Copyright 2008-2015, LEGI UMR 5519 / CNRS UJF G-INP, Grenoble, France
3%   http://www.legi.grenoble-inp.fr
4%   Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr
5%
6%     This file is part of the toolbox UVMAT.
7%
8%     UVMAT is free software; you can redistribute it and/or modify
9%     it under the terms of the GNU General Public License as published
10%     by the Free Software Foundation; either version 2 of the license,
11%     or (at your option) any later version.
12%
13%     UVMAT is distributed in the hope that it will be useful,
14%     but WITHOUT ANY WARRANTY; without even the implied warranty of
15%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16%     GNU General Public License (see LICENSE.txt) for more details.
17%=======================================================================
18
19function [x] = comp_distortion_oulu(xd,k);
20
21%comp_distortion_oulu.m
22%
23%[x] = comp_distortion_oulu(xd,k)
24%
25%Compensates for radial and tangential distortion. Model From Oulu university.
26%For more informatino about the distortion model, check the forward projection mapping function:
27%project_points.m
28%
29%INPUT: xd: distorted (normalized) point coordinates in the image plane (2xN matrix)
30%       k: Distortion coefficients (radial and tangential) (4x1 vector)
31%
32%OUTPUT: x: undistorted (normalized) point coordinates in the image plane (2xN matrix)
33%
34%Method: Iterative method for compensation.
35%
36%NOTE: This compensation has to be done after the subtraction
37%      of the principal point, and division by the focal length.
38
39
40if length(k) == 1,
41   
42    [x] = comp_distortion(xd,k);
43   
44else
45   
46    k1 = k(1);
47    k2 = k(2);
48    k3 = k(5);
49    p1 = k(3);
50    p2 = k(4);
51   
52    x = xd;                             % initial guess
53   
54    for kk=1:20,
55       
56        r_2 = sum(x.^2);
57        k_radial =  1 + k1 * r_2 + k2 * r_2.^2 + k3 * r_2.^3;
58        delta_x = [2*p1*x(1,:).*x(2,:) + p2*(r_2 + 2*x(1,:).^2);
59        p1 * (r_2 + 2*x(2,:).^2)+2*p2*x(1,:).*x(2,:)];
60        x = (xd - delta_x)./(ones(2,1)*k_radial);
61           
62    end;
63   
64end;
65   
66   
Note: See TracBrowser for help on using the repository browser.