1 | %=======================================================================
|
---|
2 | % Copyright 2008-2015, LEGI UMR 5519 / CNRS UJF G-INP, Grenoble, France
|
---|
3 | % http://www.legi.grenoble-inp.fr
|
---|
4 | % Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr
|
---|
5 | %
|
---|
6 | % This file is part of the toolbox UVMAT.
|
---|
7 | %
|
---|
8 | % UVMAT is free software; you can redistribute it and/or modify
|
---|
9 | % it under the terms of the GNU General Public License as published
|
---|
10 | % by the Free Software Foundation; either version 2 of the license,
|
---|
11 | % or (at your option) any later version.
|
---|
12 | %
|
---|
13 | % UVMAT is distributed in the hope that it will be useful,
|
---|
14 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | % GNU General Public License (see LICENSE.txt) for more details.
|
---|
17 | %=======================================================================
|
---|
18 |
|
---|
19 | function [omckk,Tckk,Rckk,H,x,ex,JJ] = compute_extrinsic(x_kk,X_kk,fc,cc,kc,alpha_c,MaxIter,thresh_cond),
|
---|
20 |
|
---|
21 | %compute_extrinsic
|
---|
22 | %
|
---|
23 | %[omckk,Tckk,Rckk,H,x,ex] = compute_extrinsic(x_kk,X_kk,fc,cc,kc,alpha_c)
|
---|
24 | %
|
---|
25 | %Computes the extrinsic parameters attached to a 3D structure X_kk given its projection
|
---|
26 | %on the image plane x_kk and the intrinsic camera parameters fc, cc and kc.
|
---|
27 | %Works with planar and non-planar structures.
|
---|
28 | %
|
---|
29 | %INPUT: x_kk: Feature locations on the images
|
---|
30 | % X_kk: Corresponding grid coordinates
|
---|
31 | % fc: Camera focal length
|
---|
32 | % cc: Principal point coordinates
|
---|
33 | % kc: Distortion coefficients
|
---|
34 | % alpha_c: Skew coefficient
|
---|
35 | %
|
---|
36 | %OUTPUT: omckk: 3D rotation vector attached to the grid positions in space
|
---|
37 | % Tckk: 3D translation vector attached to the grid positions in space
|
---|
38 | % Rckk: 3D rotation matrices corresponding to the omc vectors
|
---|
39 | % H: Homography between points on the grid and points on the image plane (in pixel)
|
---|
40 | % This makes sense only if the planar that is used in planar.
|
---|
41 | % x: Reprojections of the points on the image plane
|
---|
42 | % ex: Reprojection error: ex = x_kk - x;
|
---|
43 | %
|
---|
44 | %Method: Computes the normalized point coordinates, then computes the 3D pose
|
---|
45 | %
|
---|
46 | %Important functions called within that program:
|
---|
47 | %
|
---|
48 | %normalize_pixel: Computes the normalize image point coordinates.
|
---|
49 | %
|
---|
50 | %pose3D: Computes the 3D pose of the structure given the normalized image projection.
|
---|
51 | %
|
---|
52 | %project_points.m: Computes the 2D image projections of a set of 3D points
|
---|
53 |
|
---|
54 |
|
---|
55 |
|
---|
56 | if nargin < 8,
|
---|
57 | thresh_cond = inf;
|
---|
58 | end;
|
---|
59 |
|
---|
60 |
|
---|
61 | if nargin < 7,
|
---|
62 | MaxIter = 20;
|
---|
63 | end;
|
---|
64 |
|
---|
65 |
|
---|
66 | if nargin < 6,
|
---|
67 | alpha_c = 0;
|
---|
68 | if nargin < 5,
|
---|
69 | kc = zeros(5,1);
|
---|
70 | if nargin < 4,
|
---|
71 | cc = zeros(2,1);
|
---|
72 | if nargin < 3,
|
---|
73 | fc = ones(2,1);
|
---|
74 | if nargin < 2,
|
---|
75 | error('Need 2D projections and 3D points (in compute_extrinsic.m)');
|
---|
76 | return;
|
---|
77 | end;
|
---|
78 | end;
|
---|
79 | end;
|
---|
80 | end;
|
---|
81 | end;
|
---|
82 |
|
---|
83 | % Initialization:
|
---|
84 |
|
---|
85 | [omckk,Tckk,Rckk] = compute_extrinsic_init(x_kk,X_kk,fc,cc,kc,alpha_c);
|
---|
86 |
|
---|
87 | % Refinement:
|
---|
88 | [omckk,Tckk,Rckk,JJ] = compute_extrinsic_refine(omckk,Tckk,x_kk,X_kk,fc,cc,kc,alpha_c,MaxIter,thresh_cond);
|
---|
89 |
|
---|
90 |
|
---|
91 | % computation of the homography (not useful in the end)
|
---|
92 |
|
---|
93 | H = [Rckk(:,1:2) Tckk];
|
---|
94 |
|
---|
95 | % Computes the reprojection error in pixels:
|
---|
96 |
|
---|
97 | x = project_points2(X_kk,omckk,Tckk,fc,cc,kc,alpha_c);
|
---|
98 |
|
---|
99 | ex = x_kk - x;
|
---|
100 |
|
---|
101 |
|
---|
102 | % Converts the homography in pixel units:
|
---|
103 |
|
---|
104 | KK = [fc(1) alpha_c*fc(1) cc(1);0 fc(2) cc(2); 0 0 1];
|
---|
105 |
|
---|
106 | H = KK*H;
|
---|
107 |
|
---|
108 |
|
---|
109 |
|
---|
110 |
|
---|
111 | return;
|
---|
112 |
|
---|
113 |
|
---|
114 | % Test of compte extrinsic:
|
---|
115 |
|
---|
116 | Np = 4;
|
---|
117 | sx = 10;
|
---|
118 | sy = 10;
|
---|
119 | sz = 5;
|
---|
120 |
|
---|
121 | om = randn(3,1);
|
---|
122 | T = [0;0;100];
|
---|
123 |
|
---|
124 | noise = 2/1000;
|
---|
125 |
|
---|
126 | XX = [sx*randn(1,Np);sy*randn(1,Np);sz*randn(1,Np)];
|
---|
127 | xx = project_points(XX,om,T);
|
---|
128 |
|
---|
129 | xxn = xx + noise * randn(2,Np);
|
---|
130 |
|
---|
131 | [omckk,Tckk] = compute_extrinsic(xxn,XX);
|
---|
132 |
|
---|
133 | [om omckk om-omckk]
|
---|
134 | [T Tckk T-Tckk]
|
---|
135 |
|
---|
136 | figure(3);
|
---|
137 | plot(xx(1,:),xx(2,:),'r+');
|
---|
138 | hold on;
|
---|
139 | plot(xxn(1,:),xxn(2,:),'g+');
|
---|
140 | hold off;
|
---|