1 | function [omckk,Tckk,Rckk] = compute_extrinsic_init(x_kk,X_kk,fc,cc,kc,alpha_c),
|
---|
2 |
|
---|
3 | %compute_extrinsic
|
---|
4 | %
|
---|
5 | %[omckk,Tckk,Rckk] = compute_extrinsic_init(x_kk,X_kk,fc,cc,kc,alpha_c)
|
---|
6 | %
|
---|
7 | %Computes the extrinsic parameters attached to a 3D structure X_kk given its projection
|
---|
8 | %on the image plane x_kk and the intrinsic camera parameters fc, cc and kc.
|
---|
9 | %Works with planar and non-planar structures.
|
---|
10 | %
|
---|
11 | %INPUT: x_kk: Feature locations on the images
|
---|
12 | % X_kk: Corresponding grid coordinates
|
---|
13 | % fc: Camera focal length
|
---|
14 | % cc: Principal point coordinates
|
---|
15 | % kc: Distortion coefficients
|
---|
16 | % alpha_c: Skew coefficient
|
---|
17 | %
|
---|
18 | %OUTPUT: omckk: 3D rotation vector attached to the grid positions in space
|
---|
19 | % Tckk: 3D translation vector attached to the grid positions in space
|
---|
20 | % Rckk: 3D rotation matrices corresponding to the omc vectors
|
---|
21 | %
|
---|
22 | %Method: Computes the normalized point coordinates, then computes the 3D pose
|
---|
23 | %
|
---|
24 | %Important functions called within that program:
|
---|
25 | %
|
---|
26 | %normalize_pixel: Computes the normalize image point coordinates.
|
---|
27 | %
|
---|
28 | %pose3D: Computes the 3D pose of the structure given the normalized image projection.
|
---|
29 | %
|
---|
30 | %project_points.m: Computes the 2D image projections of a set of 3D points
|
---|
31 |
|
---|
32 |
|
---|
33 |
|
---|
34 | if nargin < 6,
|
---|
35 | alpha_c = 0;
|
---|
36 | if nargin < 5,
|
---|
37 | kc = zeros(5,1);
|
---|
38 | if nargin < 4,
|
---|
39 | cc = zeros(2,1);
|
---|
40 | if nargin < 3,
|
---|
41 | fc = ones(2,1);
|
---|
42 | if nargin < 2,
|
---|
43 | error('Need 2D projections and 3D points (in compute_extrinsic.m)');
|
---|
44 | return;
|
---|
45 | end;
|
---|
46 | end;
|
---|
47 | end;
|
---|
48 | end;
|
---|
49 | end;
|
---|
50 |
|
---|
51 |
|
---|
52 | %keyboard;
|
---|
53 |
|
---|
54 | % Compute the normalized coordinates:
|
---|
55 |
|
---|
56 | xn = normalize_pixel(x_kk,fc,cc,kc,alpha_c);
|
---|
57 |
|
---|
58 |
|
---|
59 |
|
---|
60 | Np = size(xn,2);
|
---|
61 |
|
---|
62 | %% Check for planarity of the structure:
|
---|
63 | %keyboard;
|
---|
64 |
|
---|
65 | X_mean = mean(X_kk')';
|
---|
66 |
|
---|
67 | Y = X_kk - (X_mean*ones(1,Np));
|
---|
68 |
|
---|
69 | YY = Y*Y';
|
---|
70 |
|
---|
71 | [U,S,V] = svd(YY);
|
---|
72 |
|
---|
73 | r = S(3,3)/S(2,2);
|
---|
74 |
|
---|
75 | %keyboard;
|
---|
76 |
|
---|
77 |
|
---|
78 | if (r < 1e-3)|(Np < 5), %1e-3, %1e-4, %norm(X_kk(3,:)) < eps, % Test of planarity
|
---|
79 |
|
---|
80 | %fprintf(1,'Planar structure detected: r=%f\n',r);
|
---|
81 |
|
---|
82 | % Transform the plane to bring it in the Z=0 plane:
|
---|
83 |
|
---|
84 | R_transform = V';
|
---|
85 |
|
---|
86 | %norm(R_transform(1:2,3))
|
---|
87 |
|
---|
88 | if norm(R_transform(1:2,3)) < 1e-6,
|
---|
89 | R_transform = eye(3);
|
---|
90 | end;
|
---|
91 |
|
---|
92 | if det(R_transform) < 0, R_transform = -R_transform; end;
|
---|
93 |
|
---|
94 | T_transform = -(R_transform)*X_mean;
|
---|
95 |
|
---|
96 | X_new = R_transform*X_kk + T_transform*ones(1,Np);
|
---|
97 |
|
---|
98 |
|
---|
99 | % Compute the planar homography:
|
---|
100 |
|
---|
101 | H = compute_homography(xn,X_new(1:2,:));
|
---|
102 |
|
---|
103 | % De-embed the motion parameters from the homography:
|
---|
104 |
|
---|
105 | sc = mean([norm(H(:,1));norm(H(:,2))]);
|
---|
106 |
|
---|
107 | H = H/sc;
|
---|
108 |
|
---|
109 | % Extra normalization for some reasons...
|
---|
110 | %H(:,1) = H(:,1)/norm(H(:,1));
|
---|
111 | %H(:,2) = H(:,2)/norm(H(:,2));
|
---|
112 |
|
---|
113 | if 0, %%% Some tests for myself... the opposite sign solution leads to negative depth!!!
|
---|
114 |
|
---|
115 | % Case#1: no opposite sign:
|
---|
116 |
|
---|
117 | omckk1 = rodrigues([H(:,1:2) cross(H(:,1),H(:,2))]);
|
---|
118 | Rckk1 = rodrigues(omckk1);
|
---|
119 | Tckk1 = H(:,3);
|
---|
120 |
|
---|
121 | Hs1 = [Rckk1(:,1:2) Tckk1];
|
---|
122 | xn1 = Hs1*[X_new(1:2,:);ones(1,Np)];
|
---|
123 | xn1 = [xn1(1,:)./xn1(3,:) ; xn1(2,:)./xn1(3,:)];
|
---|
124 | e1 = xn1 - xn;
|
---|
125 |
|
---|
126 | % Case#2: opposite sign:
|
---|
127 |
|
---|
128 | omckk2 = rodrigues([-H(:,1:2) cross(H(:,1),H(:,2))]);
|
---|
129 | Rckk2 = rodrigues(omckk2);
|
---|
130 | Tckk2 = -H(:,3);
|
---|
131 |
|
---|
132 | Hs2 = [Rckk2(:,1:2) Tckk2];
|
---|
133 | xn2 = Hs2*[X_new(1:2,:);ones(1,Np)];
|
---|
134 | xn2 = [xn2(1,:)./xn2(3,:) ; xn2(2,:)./xn2(3,:)];
|
---|
135 | e2 = xn2 - xn;
|
---|
136 |
|
---|
137 | if 1, %norm(e1) < norm(e2),
|
---|
138 | omckk = omckk1;
|
---|
139 | Tckk = Tckk1;
|
---|
140 | Rckk = Rckk1;
|
---|
141 | else
|
---|
142 | omckk = omckk2;
|
---|
143 | Tckk = Tckk2;
|
---|
144 | Rckk = Rckk2;
|
---|
145 | end;
|
---|
146 |
|
---|
147 | else
|
---|
148 |
|
---|
149 | u1 = H(:,1);
|
---|
150 | u1 = u1 / norm(u1);
|
---|
151 | u2 = H(:,2) - dot(u1,H(:,2)) * u1;
|
---|
152 | u2 = u2 / norm(u2);
|
---|
153 | u3 = cross(u1,u2);
|
---|
154 | RRR = [u1 u2 u3];
|
---|
155 | omckk = rodrigues(RRR);
|
---|
156 |
|
---|
157 | %omckk = rodrigues([H(:,1:2) cross(H(:,1),H(:,2))]);
|
---|
158 | Rckk = rodrigues(omckk);
|
---|
159 | Tckk = H(:,3);
|
---|
160 |
|
---|
161 | end;
|
---|
162 |
|
---|
163 |
|
---|
164 |
|
---|
165 | %If Xc = Rckk * X_new + Tckk, then Xc = Rckk * R_transform * X_kk + Tckk + T_transform
|
---|
166 |
|
---|
167 | Tckk = Tckk + Rckk* T_transform;
|
---|
168 | Rckk = Rckk * R_transform;
|
---|
169 |
|
---|
170 | omckk = rodrigues(Rckk);
|
---|
171 | Rckk = rodrigues(omckk);
|
---|
172 |
|
---|
173 |
|
---|
174 | else
|
---|
175 |
|
---|
176 | %fprintf(1,'Non planar structure detected: r=%f\n',r);
|
---|
177 |
|
---|
178 | % Computes an initial guess for extrinsic parameters (works for general 3d structure, not planar!!!):
|
---|
179 | % The DLT method is applied here!!
|
---|
180 |
|
---|
181 | J = zeros(2*Np,12);
|
---|
182 |
|
---|
183 | xX = (ones(3,1)*xn(1,:)).*X_kk;
|
---|
184 | yX = (ones(3,1)*xn(2,:)).*X_kk;
|
---|
185 |
|
---|
186 | J(1:2:end,[1 4 7]) = -X_kk';
|
---|
187 | J(2:2:end,[2 5 8]) = X_kk';
|
---|
188 | J(1:2:end,[3 6 9]) = xX';
|
---|
189 | J(2:2:end,[3 6 9]) = -yX';
|
---|
190 | J(1:2:end,12) = xn(1,:)';
|
---|
191 | J(2:2:end,12) = -xn(2,:)';
|
---|
192 | J(1:2:end,10) = -ones(Np,1);
|
---|
193 | J(2:2:end,11) = ones(Np,1);
|
---|
194 |
|
---|
195 | JJ = J'*J;
|
---|
196 | [U,S,V] = svd(JJ);
|
---|
197 |
|
---|
198 | RR = reshape(V(1:9,12),3,3);
|
---|
199 |
|
---|
200 | if det(RR) < 0,
|
---|
201 | V(:,12) = -V(:,12);
|
---|
202 | RR = -RR;
|
---|
203 | end;
|
---|
204 |
|
---|
205 | [Ur,Sr,Vr] = svd(RR);
|
---|
206 |
|
---|
207 | Rckk = Ur*Vr';
|
---|
208 |
|
---|
209 | sc = norm(V(1:9,12)) / norm(Rckk(:));
|
---|
210 | Tckk = V(10:12,12)/sc;
|
---|
211 |
|
---|
212 | omckk = rodrigues(Rckk);
|
---|
213 | Rckk = rodrigues(omckk);
|
---|
214 |
|
---|
215 | end;
|
---|