1 | %=======================================================================
|
---|
2 | % Copyright 2008-2014, LEGI UMR 5519 / CNRS UJF G-INP, Grenoble, France
|
---|
3 | % http://www.legi.grenoble-inp.fr
|
---|
4 | % Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr
|
---|
5 | %
|
---|
6 | % This file is part of the toolbox UVMAT.
|
---|
7 | %
|
---|
8 | % UVMAT is free software; you can redistribute it and/or modify
|
---|
9 | % it under the terms of the GNU General Public License as published
|
---|
10 | % by the Free Software Foundation; either version 2 of the license,
|
---|
11 | % or (at your option) any later version.
|
---|
12 | %
|
---|
13 | % UVMAT is distributed in the hope that it will be useful,
|
---|
14 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | % GNU General Public License (see LICENSE.txt) for more details.
|
---|
17 | %=======================================================================
|
---|
18 |
|
---|
19 | function [omckk,Tckk,Rckk] = compute_extrinsic_init(x_kk,X_kk,fc,cc,kc,alpha_c),
|
---|
20 |
|
---|
21 | %compute_extrinsic
|
---|
22 | %
|
---|
23 | %[omckk,Tckk,Rckk] = compute_extrinsic_init(x_kk,X_kk,fc,cc,kc,alpha_c)
|
---|
24 | %
|
---|
25 | %Computes the extrinsic parameters attached to a 3D structure X_kk given its projection
|
---|
26 | %on the image plane x_kk and the intrinsic camera parameters fc, cc and kc.
|
---|
27 | %Works with planar and non-planar structures.
|
---|
28 | %
|
---|
29 | %INPUT: x_kk: Feature locations on the images
|
---|
30 | % X_kk: Corresponding grid coordinates
|
---|
31 | % fc: Camera focal length
|
---|
32 | % cc: Principal point coordinates
|
---|
33 | % kc: Distortion coefficients
|
---|
34 | % alpha_c: Skew coefficient
|
---|
35 | %
|
---|
36 | %OUTPUT: omckk: 3D rotation vector attached to the grid positions in space
|
---|
37 | % Tckk: 3D translation vector attached to the grid positions in space
|
---|
38 | % Rckk: 3D rotation matrices corresponding to the omc vectors
|
---|
39 | %
|
---|
40 | %Method: Computes the normalized point coordinates, then computes the 3D pose
|
---|
41 | %
|
---|
42 | %Important functions called within that program:
|
---|
43 | %
|
---|
44 | %normalize_pixel: Computes the normalize image point coordinates.
|
---|
45 | %
|
---|
46 | %pose3D: Computes the 3D pose of the structure given the normalized image projection.
|
---|
47 | %
|
---|
48 | %project_points.m: Computes the 2D image projections of a set of 3D points
|
---|
49 |
|
---|
50 |
|
---|
51 |
|
---|
52 | if nargin < 6,
|
---|
53 | alpha_c = 0;
|
---|
54 | if nargin < 5,
|
---|
55 | kc = zeros(5,1);
|
---|
56 | if nargin < 4,
|
---|
57 | cc = zeros(2,1);
|
---|
58 | if nargin < 3,
|
---|
59 | fc = ones(2,1);
|
---|
60 | if nargin < 2,
|
---|
61 | error('Need 2D projections and 3D points (in compute_extrinsic.m)');
|
---|
62 | return;
|
---|
63 | end;
|
---|
64 | end;
|
---|
65 | end;
|
---|
66 | end;
|
---|
67 | end;
|
---|
68 |
|
---|
69 |
|
---|
70 | %keyboard;
|
---|
71 |
|
---|
72 | % Compute the normalized coordinates:
|
---|
73 |
|
---|
74 | xn = normalize_pixel(x_kk,fc,cc,kc,alpha_c);
|
---|
75 |
|
---|
76 |
|
---|
77 |
|
---|
78 | Np = size(xn,2);
|
---|
79 |
|
---|
80 | %% Check for planarity of the structure:
|
---|
81 | %keyboard;
|
---|
82 |
|
---|
83 | X_mean = mean(X_kk')';
|
---|
84 |
|
---|
85 | Y = X_kk - (X_mean*ones(1,Np));
|
---|
86 |
|
---|
87 | YY = Y*Y';
|
---|
88 |
|
---|
89 | [U,S,V] = svd(YY);
|
---|
90 |
|
---|
91 | r = S(3,3)/S(2,2);
|
---|
92 |
|
---|
93 | %keyboard;
|
---|
94 |
|
---|
95 |
|
---|
96 | if (r < 1e-3)|(Np < 5), %1e-3, %1e-4, %norm(X_kk(3,:)) < eps, % Test of planarity
|
---|
97 |
|
---|
98 | %fprintf(1,'Planar structure detected: r=%f\n',r);
|
---|
99 |
|
---|
100 | % Transform the plane to bring it in the Z=0 plane:
|
---|
101 |
|
---|
102 | R_transform = V';
|
---|
103 |
|
---|
104 | %norm(R_transform(1:2,3))
|
---|
105 |
|
---|
106 | if norm(R_transform(1:2,3)) < 1e-6,
|
---|
107 | R_transform = eye(3);
|
---|
108 | end;
|
---|
109 |
|
---|
110 | if det(R_transform) < 0, R_transform = -R_transform; end;
|
---|
111 |
|
---|
112 | T_transform = -(R_transform)*X_mean;
|
---|
113 |
|
---|
114 | X_new = R_transform*X_kk + T_transform*ones(1,Np);
|
---|
115 |
|
---|
116 |
|
---|
117 | % Compute the planar homography:
|
---|
118 |
|
---|
119 | H = compute_homography(xn,X_new(1:2,:));
|
---|
120 |
|
---|
121 | % De-embed the motion parameters from the homography:
|
---|
122 |
|
---|
123 | sc = mean([norm(H(:,1));norm(H(:,2))]);
|
---|
124 |
|
---|
125 | H = H/sc;
|
---|
126 |
|
---|
127 | % Extra normalization for some reasons...
|
---|
128 | %H(:,1) = H(:,1)/norm(H(:,1));
|
---|
129 | %H(:,2) = H(:,2)/norm(H(:,2));
|
---|
130 |
|
---|
131 | if 0, %%% Some tests for myself... the opposite sign solution leads to negative depth!!!
|
---|
132 |
|
---|
133 | % Case#1: no opposite sign:
|
---|
134 |
|
---|
135 | omckk1 = rodrigues([H(:,1:2) cross(H(:,1),H(:,2))]);
|
---|
136 | Rckk1 = rodrigues(omckk1);
|
---|
137 | Tckk1 = H(:,3);
|
---|
138 |
|
---|
139 | Hs1 = [Rckk1(:,1:2) Tckk1];
|
---|
140 | xn1 = Hs1*[X_new(1:2,:);ones(1,Np)];
|
---|
141 | xn1 = [xn1(1,:)./xn1(3,:) ; xn1(2,:)./xn1(3,:)];
|
---|
142 | e1 = xn1 - xn;
|
---|
143 |
|
---|
144 | % Case#2: opposite sign:
|
---|
145 |
|
---|
146 | omckk2 = rodrigues([-H(:,1:2) cross(H(:,1),H(:,2))]);
|
---|
147 | Rckk2 = rodrigues(omckk2);
|
---|
148 | Tckk2 = -H(:,3);
|
---|
149 |
|
---|
150 | Hs2 = [Rckk2(:,1:2) Tckk2];
|
---|
151 | xn2 = Hs2*[X_new(1:2,:);ones(1,Np)];
|
---|
152 | xn2 = [xn2(1,:)./xn2(3,:) ; xn2(2,:)./xn2(3,:)];
|
---|
153 | e2 = xn2 - xn;
|
---|
154 |
|
---|
155 | if 1, %norm(e1) < norm(e2),
|
---|
156 | omckk = omckk1;
|
---|
157 | Tckk = Tckk1;
|
---|
158 | Rckk = Rckk1;
|
---|
159 | else
|
---|
160 | omckk = omckk2;
|
---|
161 | Tckk = Tckk2;
|
---|
162 | Rckk = Rckk2;
|
---|
163 | end;
|
---|
164 |
|
---|
165 | else
|
---|
166 |
|
---|
167 | u1 = H(:,1);
|
---|
168 | u1 = u1 / norm(u1);
|
---|
169 | u2 = H(:,2) - dot(u1,H(:,2)) * u1;
|
---|
170 | u2 = u2 / norm(u2);
|
---|
171 | u3 = cross(u1,u2);
|
---|
172 | RRR = [u1 u2 u3];
|
---|
173 | omckk = rodrigues(RRR);
|
---|
174 |
|
---|
175 | %omckk = rodrigues([H(:,1:2) cross(H(:,1),H(:,2))]);
|
---|
176 | Rckk = rodrigues(omckk);
|
---|
177 | Tckk = H(:,3);
|
---|
178 |
|
---|
179 | end;
|
---|
180 |
|
---|
181 |
|
---|
182 |
|
---|
183 | %If Xc = Rckk * X_new + Tckk, then Xc = Rckk * R_transform * X_kk + Tckk + T_transform
|
---|
184 |
|
---|
185 | Tckk = Tckk + Rckk* T_transform;
|
---|
186 | Rckk = Rckk * R_transform;
|
---|
187 |
|
---|
188 | omckk = rodrigues(Rckk);
|
---|
189 | Rckk = rodrigues(omckk);
|
---|
190 |
|
---|
191 |
|
---|
192 | else
|
---|
193 |
|
---|
194 | %fprintf(1,'Non planar structure detected: r=%f\n',r);
|
---|
195 |
|
---|
196 | % Computes an initial guess for extrinsic parameters (works for general 3d structure, not planar!!!):
|
---|
197 | % The DLT method is applied here!!
|
---|
198 |
|
---|
199 | J = zeros(2*Np,12);
|
---|
200 |
|
---|
201 | xX = (ones(3,1)*xn(1,:)).*X_kk;
|
---|
202 | yX = (ones(3,1)*xn(2,:)).*X_kk;
|
---|
203 |
|
---|
204 | J(1:2:end,[1 4 7]) = -X_kk';
|
---|
205 | J(2:2:end,[2 5 8]) = X_kk';
|
---|
206 | J(1:2:end,[3 6 9]) = xX';
|
---|
207 | J(2:2:end,[3 6 9]) = -yX';
|
---|
208 | J(1:2:end,12) = xn(1,:)';
|
---|
209 | J(2:2:end,12) = -xn(2,:)';
|
---|
210 | J(1:2:end,10) = -ones(Np,1);
|
---|
211 | J(2:2:end,11) = ones(Np,1);
|
---|
212 |
|
---|
213 | JJ = J'*J;
|
---|
214 | [U,S,V] = svd(JJ);
|
---|
215 |
|
---|
216 | RR = reshape(V(1:9,12),3,3);
|
---|
217 |
|
---|
218 | if det(RR) < 0,
|
---|
219 | V(:,12) = -V(:,12);
|
---|
220 | RR = -RR;
|
---|
221 | end;
|
---|
222 |
|
---|
223 | [Ur,Sr,Vr] = svd(RR);
|
---|
224 |
|
---|
225 | Rckk = Ur*Vr';
|
---|
226 |
|
---|
227 | sc = norm(V(1:9,12)) / norm(Rckk(:));
|
---|
228 | Tckk = V(10:12,12)/sc;
|
---|
229 |
|
---|
230 | omckk = rodrigues(Rckk);
|
---|
231 | Rckk = rodrigues(omckk);
|
---|
232 |
|
---|
233 | end;
|
---|