1 | |
---|
2 | %%% Extraction of the final intrinsic and extrinsic paramaters: |
---|
3 | |
---|
4 | check_active_images; |
---|
5 | |
---|
6 | if ~exist('solution_error') |
---|
7 | solution_error = zeros(6*n_ima + 15,1); |
---|
8 | end; |
---|
9 | |
---|
10 | fc = solution(1:2);%*** |
---|
11 | cc = solution(3:4);%*** |
---|
12 | alpha_c = solution(5);%*** |
---|
13 | kc = solution(6:10);%*** |
---|
14 | |
---|
15 | fc_error = solution_error(1:2); |
---|
16 | cc_error = solution_error(3:4); |
---|
17 | alpha_c_error = solution_error(5); |
---|
18 | kc_error = solution_error(6:10); |
---|
19 | |
---|
20 | % Calibration matrix: |
---|
21 | |
---|
22 | KK = [fc(1) fc(1)*alpha_c cc(1);0 fc(2) cc(2); 0 0 1]; |
---|
23 | inv_KK = inv(KK); |
---|
24 | |
---|
25 | % Extract the extrinsic paramters, and recomputer the collineations |
---|
26 | |
---|
27 | for kk = 1:n_ima, |
---|
28 | |
---|
29 | if active_images(kk), |
---|
30 | omckk = solution(15+6*(kk-1) + 1:15+6*(kk-1) + 3);%*** |
---|
31 | Tckk = solution(15+6*(kk-1) + 4:15+6*(kk-1) + 6);%*** |
---|
32 | |
---|
33 | omckk_error = solution_error(15+6*(kk-1) + 1:15+6*(kk-1) + 3); |
---|
34 | Tckk_error = solution_error(15+6*(kk-1) + 4:15+6*(kk-1) + 6); |
---|
35 | |
---|
36 | Rckk = rodrigues(omckk); |
---|
37 | |
---|
38 | Hkk = KK * [Rckk(:,1) Rckk(:,2) Tckk]; |
---|
39 | |
---|
40 | Hkk = Hkk / Hkk(3,3); |
---|
41 | |
---|
42 | else |
---|
43 | omckk = NaN*ones(3,1); |
---|
44 | Tckk = NaN*ones(3,1); |
---|
45 | Rckk = NaN*ones(3,3); |
---|
46 | Hkk = NaN*ones(3,3); |
---|
47 | omckk_error = NaN*ones(3,1); |
---|
48 | Tckk_error = NaN*ones(3,1); |
---|
49 | end; |
---|
50 | |
---|
51 | eval(['omc_' num2str(kk) ' = omckk;']); |
---|
52 | eval(['Rc_' num2str(kk) ' = Rckk;']); |
---|
53 | eval(['Tc_' num2str(kk) ' = Tckk;']); |
---|
54 | eval(['H_' num2str(kk) '= Hkk;']); |
---|
55 | eval(['omc_error_' num2str(kk) ' = omckk_error;']); |
---|
56 | eval(['Tc_error_' num2str(kk) ' = Tckk_error;']); |
---|
57 | end; |
---|