[810] | 1 | %=======================================================================
|
---|
[924] | 2 | % Copyright 2008-2016, LEGI UMR 5519 / CNRS UGA G-INP, Grenoble, France
|
---|
[810] | 3 | % http://www.legi.grenoble-inp.fr
|
---|
| 4 | % Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr
|
---|
| 5 | %
|
---|
| 6 | % This file is part of the toolbox UVMAT.
|
---|
| 7 | %
|
---|
| 8 | % UVMAT is free software; you can redistribute it and/or modify
|
---|
| 9 | % it under the terms of the GNU General Public License as published
|
---|
| 10 | % by the Free Software Foundation; either version 2 of the license,
|
---|
| 11 | % or (at your option) any later version.
|
---|
| 12 | %
|
---|
| 13 | % UVMAT is distributed in the hope that it will be useful,
|
---|
| 14 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | % GNU General Public License (see LICENSE.txt) for more details.
|
---|
| 17 | %=======================================================================
|
---|
| 18 |
|
---|
[725] | 19 | %go_calib_optim_iter
|
---|
| 20 | %
|
---|
| 21 | %Main calibration function. Computes the intrinsic andextrinsic parameters.
|
---|
| 22 | %Runs as a script.
|
---|
| 23 | %
|
---|
| 24 | %INPUT: x_1,x_2,x_3,...: Feature locations on the images
|
---|
| 25 | % X_1,X_2,X_3,...: Corresponding grid coordinates
|
---|
| 26 | %
|
---|
| 27 | %OUTPUT: fc: Camera focal length
|
---|
| 28 | % cc: Principal point coordinates
|
---|
| 29 | % alpha_c: Skew coefficient
|
---|
| 30 | % kc: Distortion coefficients
|
---|
| 31 | % KK: The camera matrix (containing fc and cc)
|
---|
| 32 | % omc_1,omc_2,omc_3,...: 3D rotation vectors attached to the grid positions in space
|
---|
| 33 | % Tc_1,Tc_2,Tc_3,...: 3D translation vectors attached to the grid positions in space
|
---|
| 34 | % Rc_1,Rc_2,Rc_3,...: 3D rotation matrices corresponding to the omc vectors
|
---|
| 35 | %
|
---|
| 36 | %Method: Minimizes the pixel reprojection error in the least squares sense over the intrinsic
|
---|
| 37 | % camera parameters, and the extrinsic parameters (3D locations of the grids in space)
|
---|
| 38 | %
|
---|
| 39 | %Note: If the intrinsic camera parameters (fc, cc, kc) do not exist before, they are initialized through
|
---|
| 40 | % the function init_intrinsic_param.m. Otherwise, the variables in memory are used as initial guesses.
|
---|
| 41 | %
|
---|
| 42 | %Note: The row vector active_images consists of zeros and ones. To deactivate an image, set the
|
---|
| 43 | % corresponding entry in the active_images vector to zero.
|
---|
| 44 | %
|
---|
| 45 | %VERY IMPORTANT: This function works for 2D and 3D calibration rigs, except for init_intrinsic_param.m
|
---|
| 46 | %that is so far implemented to work only with 2D rigs.
|
---|
| 47 | %In the future, a more general function will be there.
|
---|
| 48 | %For now, if using a 3D calibration rig, quick_init is set to 1 for an easy initialization of the focal length
|
---|
| 49 |
|
---|
| 50 | if ~exist('desactivated_images'),
|
---|
| 51 | desactivated_images = [];
|
---|
| 52 | end;
|
---|
| 53 |
|
---|
| 54 |
|
---|
| 55 |
|
---|
| 56 | if ~exist('est_aspect_ratio'),
|
---|
| 57 | est_aspect_ratio = 1;
|
---|
| 58 | end;
|
---|
| 59 |
|
---|
| 60 | if ~exist('est_fc');
|
---|
| 61 | est_fc = [1;1]; % Set to zero if you do not want to estimate the focal length (it may be useful! believe it or not!)
|
---|
| 62 | end;
|
---|
| 63 |
|
---|
| 64 | if ~exist('recompute_extrinsic'),
|
---|
| 65 | recompute_extrinsic = 1; % Set this variable to 0 in case you do not want to recompute the extrinsic parameters
|
---|
| 66 | % at each iterstion.
|
---|
| 67 | end;
|
---|
| 68 |
|
---|
| 69 | if ~exist('MaxIter'),
|
---|
| 70 | MaxIter = 30; % Maximum number of iterations in the gradient descent
|
---|
| 71 | end;
|
---|
| 72 |
|
---|
| 73 | if ~exist('check_cond'),
|
---|
| 74 | check_cond = 1; % Set this variable to 0 in case you don't want to extract view dynamically
|
---|
| 75 | end;
|
---|
| 76 |
|
---|
| 77 | if ~exist('center_optim'),
|
---|
| 78 | center_optim = 1; %%% Set this variable to 0 if your do not want to estimate the principal point
|
---|
| 79 | end;
|
---|
| 80 |
|
---|
| 81 | if exist('est_dist'),
|
---|
| 82 | if length(est_dist) == 4,
|
---|
| 83 | est_dist = [est_dist ; 0];
|
---|
| 84 | end;
|
---|
| 85 | end;
|
---|
| 86 |
|
---|
| 87 | if ~exist('est_dist'),
|
---|
| 88 | est_dist = [1;1;1;1;0];
|
---|
| 89 | end;
|
---|
| 90 |
|
---|
| 91 | if ~exist('est_alpha'),
|
---|
| 92 | est_alpha = 0; % by default, do not estimate skew
|
---|
| 93 | end;
|
---|
| 94 |
|
---|
| 95 |
|
---|
| 96 | % Little fix in case of stupid values in the binary variables:
|
---|
| 97 | center_optim = double(~~center_optim);
|
---|
| 98 | est_alpha = double(~~est_alpha);
|
---|
| 99 | est_dist = double(~~est_dist);
|
---|
| 100 | est_fc = double(~~est_fc);
|
---|
| 101 | est_aspect_ratio = double(~~est_aspect_ratio);
|
---|
| 102 |
|
---|
| 103 |
|
---|
| 104 |
|
---|
| 105 | fprintf(1,'\n');
|
---|
| 106 |
|
---|
| 107 | if ~exist('nx')&~exist('ny'),
|
---|
| 108 | fprintf(1,'WARNING: No image size (nx,ny) available. Setting nx=640 and ny=480. If these are not the right values, change values manually.\n');
|
---|
| 109 | nx = 640;
|
---|
| 110 | ny = 480;
|
---|
| 111 | end;
|
---|
| 112 |
|
---|
| 113 |
|
---|
| 114 | check_active_images;
|
---|
| 115 |
|
---|
| 116 | quick_init = 0; % Set to 1 for using a quick init (necessary when using 3D rigs)
|
---|
| 117 |
|
---|
| 118 |
|
---|
| 119 | % Check 3D-ness of the calibration rig:
|
---|
| 120 | rig3D = 0;
|
---|
| 121 | for kk = ind_active,
|
---|
| 122 | eval(['X_kk = X_' num2str(kk) ';']);
|
---|
| 123 | if is3D(X_kk),
|
---|
| 124 | rig3D = 1;
|
---|
| 125 | end;
|
---|
| 126 | end;
|
---|
| 127 |
|
---|
| 128 |
|
---|
| 129 | if center_optim & (length(ind_active) < 2) & ~rig3D,
|
---|
| 130 | fprintf(1,'WARNING: Principal point rejected from the optimization when using one image and planar rig (center_optim = 1).\n');
|
---|
| 131 | center_optim = 0; %%% when using a single image, please, no principal point estimation!!!
|
---|
| 132 | est_alpha = 0;
|
---|
| 133 | end;
|
---|
| 134 |
|
---|
| 135 | if ~exist('dont_ask'),
|
---|
| 136 | dont_ask = 0;
|
---|
| 137 | end;
|
---|
| 138 |
|
---|
| 139 | if center_optim & (length(ind_active) < 5) & ~rig3D,
|
---|
| 140 | fprintf(1,'WARNING: The principal point estimation may be unreliable (using less than 5 images for calibration).\n');
|
---|
| 141 | %if ~dont_ask,
|
---|
| 142 | % quest = input('Are you sure you want to keep the principal point in the optimization process? ([]=yes, other=no) ');
|
---|
| 143 | % center_optim = isempty(quest);
|
---|
| 144 | %end;
|
---|
| 145 | end;
|
---|
| 146 |
|
---|
| 147 |
|
---|
| 148 | % A quick fix for solving conflict
|
---|
| 149 | if ~isequal(est_fc,[1;1]),
|
---|
| 150 | est_aspect_ratio=1;
|
---|
| 151 | end;
|
---|
| 152 | if ~est_aspect_ratio,
|
---|
| 153 | est_fc=[1;1];
|
---|
| 154 | end;
|
---|
| 155 |
|
---|
| 156 |
|
---|
| 157 | if ~est_aspect_ratio,
|
---|
| 158 | fprintf(1,'Aspect ratio not optimized (est_aspect_ratio = 0) -> fc(1)=fc(2). Set est_aspect_ratio to 1 for estimating aspect ratio.\n');
|
---|
| 159 | else
|
---|
| 160 | if isequal(est_fc,[1;1]),
|
---|
| 161 | fprintf(1,'Aspect ratio optimized (est_aspect_ratio = 1) -> both components of fc are estimated (DEFAULT).\n');
|
---|
| 162 | end;
|
---|
| 163 | end;
|
---|
| 164 |
|
---|
| 165 | if ~isequal(est_fc,[1;1]),
|
---|
| 166 | if isequal(est_fc,[1;0]),
|
---|
| 167 | fprintf(1,'The first component of focal (fc(1)) is estimated, but not the second one (est_fc=[1;0])\n');
|
---|
| 168 | else
|
---|
| 169 | if isequal(est_fc,[0;1]),
|
---|
| 170 | fprintf(1,'The second component of focal (fc(1)) is estimated, but not the first one (est_fc=[0;1])\n');
|
---|
| 171 | else
|
---|
| 172 | fprintf(1,'The focal vector fc is not optimized (est_fc=[0;0])\n');
|
---|
| 173 | end;
|
---|
| 174 | end;
|
---|
| 175 | end;
|
---|
| 176 |
|
---|
| 177 |
|
---|
| 178 | if ~center_optim, % In the case where the principal point is not estimated, keep it at the center of the image
|
---|
| 179 | fprintf(1,'Principal point not optimized (center_optim=0). ');
|
---|
| 180 | if ~exist('cc'),
|
---|
| 181 | fprintf(1,'It is kept at the center of the image.\n');
|
---|
| 182 | cc = [(nx-1)/2;(ny-1)/2];
|
---|
| 183 | else
|
---|
| 184 | fprintf(1,'Note: to set it in the middle of the image, clear variable cc, and run calibration again.\n');
|
---|
| 185 | end;
|
---|
| 186 | else
|
---|
| 187 | fprintf(1,'Principal point optimized (center_optim=1) - (DEFAULT). To reject principal point, set center_optim=0\n');
|
---|
| 188 | end;
|
---|
| 189 |
|
---|
| 190 |
|
---|
| 191 | if ~center_optim & (est_alpha),
|
---|
| 192 | fprintf(1,'WARNING: Since there is no principal point estimation (center_optim=0), no skew estimation (est_alpha = 0)\n');
|
---|
| 193 | est_alpha = 0;
|
---|
| 194 | end;
|
---|
| 195 |
|
---|
| 196 | if ~est_alpha,
|
---|
| 197 | fprintf(1,'Skew not optimized (est_alpha=0) - (DEFAULT)\n');
|
---|
| 198 | alpha_c = 0;
|
---|
| 199 | else
|
---|
| 200 | fprintf(1,'Skew optimized (est_alpha=1). To disable skew estimation, set est_alpha=0.\n');
|
---|
| 201 | end;
|
---|
| 202 |
|
---|
| 203 |
|
---|
| 204 | if ~prod(double(est_dist)),
|
---|
| 205 | fprintf(1,'Distortion not fully estimated (defined by the variable est_dist):\n');
|
---|
| 206 | if ~est_dist(1),
|
---|
| 207 | fprintf(1,' Second order distortion not estimated (est_dist(1)=0).\n');
|
---|
| 208 | end;
|
---|
| 209 | if ~est_dist(2),
|
---|
| 210 | fprintf(1,' Fourth order distortion not estimated (est_dist(2)=0).\n');
|
---|
| 211 | end;
|
---|
| 212 | if ~est_dist(5),
|
---|
| 213 | fprintf(1,' Sixth order distortion not estimated (est_dist(5)=0) - (DEFAULT) .\n');
|
---|
| 214 | end;
|
---|
| 215 | if ~prod(double(est_dist(3:4))),
|
---|
| 216 | fprintf(1,' Tangential distortion not estimated (est_dist(3:4)~=[1;1]).\n');
|
---|
| 217 | end;
|
---|
| 218 | end;
|
---|
| 219 |
|
---|
| 220 |
|
---|
| 221 | % Check 3D-ness of the calibration rig:
|
---|
| 222 | rig3D = 0;
|
---|
| 223 | for kk = ind_active,
|
---|
| 224 | eval(['X_kk = X_' num2str(kk) ';']);
|
---|
| 225 | if is3D(X_kk),
|
---|
| 226 | rig3D = 1;
|
---|
| 227 | end;
|
---|
| 228 | end;
|
---|
| 229 |
|
---|
| 230 | % If the rig is 3D, then no choice: the only valid initialization is manual!
|
---|
| 231 | if rig3D,
|
---|
| 232 | quick_init = 1;
|
---|
| 233 | end;
|
---|
| 234 |
|
---|
| 235 |
|
---|
| 236 |
|
---|
| 237 | alpha_smooth = 0.1; % set alpha_smooth = 1; for steepest gradient descent
|
---|
| 238 | % alpha_smooth = 0.01; % modified L. Gostiaux
|
---|
| 239 |
|
---|
| 240 |
|
---|
| 241 | % Conditioning threshold for view rejection
|
---|
| 242 | thresh_cond = 1e5;
|
---|
| 243 |
|
---|
| 244 |
|
---|
| 245 |
|
---|
| 246 | % Initialization of the intrinsic parameters (if necessary)
|
---|
| 247 |
|
---|
| 248 | if ~exist('cc'),
|
---|
| 249 | fprintf(1,'Initialization of the principal point at the center of the image.\n');
|
---|
| 250 | cc = [(nx-1)/2;(ny-1)/2];
|
---|
| 251 | alpha_smooth = 0.1; % slow convergence
|
---|
| 252 | end;
|
---|
| 253 |
|
---|
| 254 |
|
---|
| 255 | if exist('kc'),
|
---|
| 256 | if length(kc) == 4;
|
---|
| 257 | fprintf(1,'Adding a new distortion coefficient to kc -> radial distortion model up to the 6th degree');
|
---|
| 258 | kc = [kc;0];
|
---|
| 259 | end;
|
---|
| 260 | end;
|
---|
| 261 |
|
---|
| 262 |
|
---|
| 263 |
|
---|
| 264 | if ~exist('alpha_c'),
|
---|
| 265 | fprintf(1,'Initialization of the image skew to zero.\n');
|
---|
| 266 | alpha_c = 0;
|
---|
| 267 | alpha_smooth = 0.1; % slow convergence
|
---|
| 268 | end;
|
---|
| 269 |
|
---|
| 270 | if ~exist('fc')& quick_init,
|
---|
| 271 | FOV_angle = 35; % Initial camera field of view in degrees
|
---|
| 272 | fprintf(1,['Initialization of the focal length to a FOV of ' num2str(FOV_angle) ' degrees.\n']);
|
---|
| 273 | fc = (nx/2)/tan(pi*FOV_angle/360) * ones(2,1);
|
---|
| 274 | est_fc = [1;1];
|
---|
| 275 | alpha_smooth = 0.1; % slow
|
---|
| 276 | end;
|
---|
| 277 |
|
---|
| 278 |
|
---|
| 279 | if ~exist('fc'),
|
---|
| 280 | % Initialization of the intrinsic parameters:
|
---|
| 281 | fprintf(1,'Initialization of the intrinsic parameters using the vanishing points of planar patterns.\n')
|
---|
| 282 | init_intrinsic_param; % The right way to go (if quick_init is not active)!
|
---|
| 283 | alpha_smooth = 0.1; % slow convergence
|
---|
| 284 | est_fc = [1;1];
|
---|
| 285 | end;
|
---|
| 286 |
|
---|
| 287 |
|
---|
| 288 | if ~exist('kc'),
|
---|
| 289 | fprintf(1,'Initialization of the image distortion to zero.\n');
|
---|
| 290 | kc = zeros(5,1);
|
---|
| 291 | alpha_smooth = 0.1; % slow convergence
|
---|
| 292 | end;
|
---|
| 293 |
|
---|
| 294 | if ~est_aspect_ratio,
|
---|
| 295 | fc(1) = (fc(1)+fc(2))/2;
|
---|
| 296 | fc(2) = fc(1);
|
---|
| 297 | end;
|
---|
| 298 |
|
---|
| 299 | if ~prod(double(est_dist)),
|
---|
| 300 | % If no distortion estimated, set to zero the variables that are not estimated
|
---|
| 301 | kc = kc .* est_dist;
|
---|
| 302 | end;
|
---|
| 303 |
|
---|
| 304 |
|
---|
| 305 | if ~prod(double(est_fc)),
|
---|
| 306 | fprintf(1,'Warning: The focal length is not fully estimated (est_fc ~= [1;1])\n');
|
---|
| 307 | end;
|
---|
| 308 |
|
---|
| 309 |
|
---|
| 310 | %%% Initialization of the extrinsic parameters for global minimization:
|
---|
| 311 | comp_ext_calib;
|
---|
| 312 |
|
---|
| 313 |
|
---|
| 314 |
|
---|
| 315 | %%% Initialization of the global parameter vector:
|
---|
| 316 |
|
---|
| 317 | init_param = [fc;cc;alpha_c;kc;zeros(5,1)];
|
---|
| 318 |
|
---|
| 319 | for kk = 1:n_ima,
|
---|
| 320 | eval(['omckk = omc_' num2str(kk) ';']);
|
---|
| 321 | eval(['Tckk = Tc_' num2str(kk) ';']);
|
---|
| 322 | init_param = [init_param; omckk ; Tckk];
|
---|
| 323 | end;
|
---|
| 324 |
|
---|
| 325 |
|
---|
| 326 |
|
---|
| 327 | %-------------------- Main Optimization:
|
---|
| 328 |
|
---|
| 329 | fprintf(1,'\nMain calibration optimization procedure - Number of images: %d\n',length(ind_active));
|
---|
| 330 |
|
---|
| 331 |
|
---|
| 332 | param = init_param;
|
---|
| 333 | change = 1;
|
---|
| 334 |
|
---|
| 335 | iter = 0;
|
---|
| 336 |
|
---|
| 337 | fprintf(1,'Gradient descent iterations: ');
|
---|
| 338 |
|
---|
| 339 | param_list = param;
|
---|
| 340 |
|
---|
| 341 |
|
---|
| 342 | while (change > 1e-2)&(iter < MaxIter),
|
---|
| 343 |
|
---|
| 344 | fprintf(1,'%d...',iter+1);
|
---|
| 345 |
|
---|
| 346 | % To speed up: pre-allocate the memory for the Jacobian JJ3.
|
---|
| 347 | % For that, need to compute the total number of points.
|
---|
| 348 |
|
---|
| 349 | %% The first step consists of updating the whole vector of knowns (intrinsic + extrinsic of active
|
---|
| 350 | %% images) through a one step steepest gradient descent.
|
---|
| 351 |
|
---|
| 352 |
|
---|
| 353 | f = param(1:2);
|
---|
| 354 | c = param(3:4);
|
---|
| 355 | alpha = param(5);
|
---|
| 356 | k = param(6:10);
|
---|
| 357 |
|
---|
| 358 |
|
---|
| 359 | % Compute the size of the Jacobian matrix:
|
---|
| 360 | N_points_views_active = N_points_views(ind_active);
|
---|
| 361 |
|
---|
| 362 | JJ3 = sparse([],[],[],15 + 6*n_ima,15 + 6*n_ima,126*n_ima + 225);
|
---|
| 363 | ex3 = zeros(15 + 6*n_ima,1);
|
---|
| 364 |
|
---|
| 365 |
|
---|
| 366 | for kk = ind_active, %1:n_ima,
|
---|
| 367 | %if active_images(kk),
|
---|
| 368 |
|
---|
| 369 | omckk = param(15+6*(kk-1) + 1:15+6*(kk-1) + 3);
|
---|
| 370 |
|
---|
| 371 | Tckk = param(15+6*(kk-1) + 4:15+6*(kk-1) + 6);
|
---|
| 372 |
|
---|
| 373 | if isnan(omckk(1)),
|
---|
| 374 | fprintf(1,'Intrinsic parameters at frame %d do not exist\n',kk);
|
---|
| 375 | return;
|
---|
| 376 | end;
|
---|
| 377 |
|
---|
| 378 | eval(['X_kk = X_' num2str(kk) ';']);
|
---|
| 379 | eval(['x_kk = x_' num2str(kk) ';']);
|
---|
| 380 |
|
---|
| 381 | Np = N_points_views(kk);
|
---|
| 382 |
|
---|
| 383 | if ~est_aspect_ratio,
|
---|
| 384 | [x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points2(X_kk,omckk,Tckk,f(1),c,k,alpha);
|
---|
| 385 | dxdf = repmat(dxdf,[1 2]);
|
---|
| 386 | else
|
---|
| 387 | [x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points2(X_kk,omckk,Tckk,f,c,k,alpha);
|
---|
| 388 | end;
|
---|
| 389 |
|
---|
| 390 | exkk = x_kk - x;
|
---|
| 391 |
|
---|
| 392 | A = [dxdf dxdc dxdalpha dxdk]';
|
---|
| 393 | B = [dxdom dxdT]';
|
---|
| 394 |
|
---|
| 395 | JJ3(1:10,1:10) = JJ3(1:10,1:10) + sparse(A*A');
|
---|
| 396 | JJ3(15+6*(kk-1) + 1:15+6*(kk-1) + 6,15+6*(kk-1) + 1:15+6*(kk-1) + 6) = sparse(B*B');
|
---|
| 397 |
|
---|
| 398 | AB = sparse(A*B');
|
---|
| 399 | JJ3(1:10,15+6*(kk-1) + 1:15+6*(kk-1) + 6) = AB;
|
---|
| 400 | JJ3(15+6*(kk-1) + 1:15+6*(kk-1) + 6,1:10) = (AB)';
|
---|
| 401 |
|
---|
| 402 | ex3(1:10) = ex3(1:10) + A*exkk(:);
|
---|
| 403 | ex3(15+6*(kk-1) + 1:15+6*(kk-1) + 6) = B*exkk(:);
|
---|
| 404 |
|
---|
| 405 | % Check if this view is ill-conditioned:
|
---|
| 406 | if check_cond,
|
---|
| 407 | JJ_kk = B'; %[dxdom dxdT];
|
---|
| 408 | if (cond(JJ_kk)> thresh_cond),
|
---|
| 409 | active_images(kk) = 0;
|
---|
| 410 | fprintf(1,'\nWarning: View #%d ill-conditioned. This image is now set inactive. (note: to disactivate this option, set check_cond=0)\n',kk)
|
---|
| 411 | desactivated_images = [desactivated_images kk];
|
---|
| 412 | param(15+6*(kk-1) + 1:15+6*(kk-1) + 6) = NaN*ones(6,1);
|
---|
| 413 | end;
|
---|
| 414 | end;
|
---|
| 415 |
|
---|
| 416 | %end;
|
---|
| 417 |
|
---|
| 418 | end;
|
---|
| 419 |
|
---|
| 420 |
|
---|
| 421 | % List of active images (necessary if changed):
|
---|
| 422 | check_active_images;
|
---|
| 423 |
|
---|
| 424 |
|
---|
| 425 | % The following vector helps to select the variables to update (for only active images):
|
---|
| 426 | selected_variables = [est_fc;center_optim*ones(2,1);est_alpha;est_dist;zeros(5,1);reshape(ones(6,1)*active_images,6*n_ima,1)];
|
---|
| 427 | if ~est_aspect_ratio,
|
---|
| 428 | if isequal(est_fc,[1;1]) | isequal(est_fc,[1;0]),
|
---|
| 429 | selected_variables(2) = 0;
|
---|
| 430 | end;
|
---|
| 431 | end;
|
---|
| 432 | ind_Jac = find(selected_variables)';
|
---|
| 433 |
|
---|
| 434 | JJ3 = JJ3(ind_Jac,ind_Jac);
|
---|
| 435 | ex3 = ex3(ind_Jac);
|
---|
| 436 |
|
---|
| 437 | JJ2_inv = inv(JJ3); % not bad for sparse matrices!!
|
---|
| 438 |
|
---|
| 439 |
|
---|
| 440 | % Smoothing coefficient:
|
---|
| 441 |
|
---|
| 442 | alpha_smooth2 = 1-(1-alpha_smooth)^(iter+1); %set to 1 to undo any smoothing!
|
---|
| 443 |
|
---|
| 444 | param_innov = alpha_smooth2*JJ2_inv*ex3;
|
---|
| 445 |
|
---|
| 446 |
|
---|
| 447 | param_up = param(ind_Jac) + param_innov;
|
---|
| 448 | param(ind_Jac) = param_up;
|
---|
| 449 |
|
---|
| 450 |
|
---|
| 451 | % New intrinsic parameters:
|
---|
| 452 |
|
---|
| 453 | fc_current = param(1:2);
|
---|
| 454 | cc_current = param(3:4);
|
---|
| 455 |
|
---|
| 456 | if center_optim & ((param(3)<0)|(param(3)>nx)|(param(4)<0)|(param(4)>ny)),
|
---|
| 457 | fprintf(1,'Warning: it appears that the principal point cannot be estimated. Setting center_optim = 0\n');
|
---|
| 458 | center_optim = 0;
|
---|
| 459 | cc_current = c;
|
---|
| 460 | else
|
---|
| 461 | cc_current = param(3:4);
|
---|
| 462 | end;
|
---|
| 463 |
|
---|
| 464 | alpha_current = param(5);
|
---|
| 465 | kc_current = param(6:10);
|
---|
| 466 |
|
---|
| 467 | if ~est_aspect_ratio & isequal(est_fc,[1;1]),
|
---|
| 468 | fc_current(2) = fc_current(1);
|
---|
| 469 | param(2) = param(1);
|
---|
| 470 | end;
|
---|
| 471 |
|
---|
| 472 | % Change on the intrinsic parameters:
|
---|
| 473 | change = norm([fc_current;cc_current] - [f;c])/norm([fc_current;cc_current]);
|
---|
| 474 |
|
---|
| 475 |
|
---|
| 476 | %% Second step: (optional) - It makes convergence faster, and the region of convergence LARGER!!!
|
---|
| 477 | %% Recompute the extrinsic parameters only using compute_extrinsic.m (this may be useful sometimes)
|
---|
| 478 | %% The complete gradient descent method is useful to precisely update the intrinsic parameters.
|
---|
| 479 |
|
---|
| 480 |
|
---|
| 481 | if recompute_extrinsic,
|
---|
| 482 | MaxIter2 = 20;
|
---|
| 483 | for kk =ind_active, %1:n_ima,
|
---|
| 484 | %if active_images(kk),
|
---|
| 485 | omc_current = param(15+6*(kk-1) + 1:15+6*(kk-1) + 3);
|
---|
| 486 | Tc_current = param(15+6*(kk-1) + 4:15+6*(kk-1) + 6);
|
---|
| 487 | eval(['X_kk = X_' num2str(kk) ';']);
|
---|
| 488 | eval(['x_kk = x_' num2str(kk) ';']);
|
---|
| 489 | [omc_current,Tc_current] = compute_extrinsic_init(x_kk,X_kk,fc_current,cc_current,kc_current,alpha_current);
|
---|
| 490 | [omckk,Tckk,Rckk,JJ_kk] = compute_extrinsic_refine(omc_current,Tc_current,x_kk,X_kk,fc_current,cc_current,kc_current,alpha_current,MaxIter2,thresh_cond);
|
---|
| 491 | if check_cond,
|
---|
| 492 | if (cond(JJ_kk)> thresh_cond),
|
---|
| 493 | active_images(kk) = 0;
|
---|
| 494 | fprintf(1,'\nWarning: View #%d ill-conditioned. This image is now set inactive. (note: to disactivate this option, set check_cond=0)\n',kk);
|
---|
| 495 | desactivated_images = [desactivated_images kk];
|
---|
| 496 | omckk = NaN*ones(3,1);
|
---|
| 497 | Tckk = NaN*ones(3,1);
|
---|
| 498 | end;
|
---|
| 499 | end;
|
---|
| 500 | param(15+6*(kk-1) + 1:15+6*(kk-1) + 3) = omckk;
|
---|
| 501 | param(15+6*(kk-1) + 4:15+6*(kk-1) + 6) = Tckk;
|
---|
| 502 | %end;
|
---|
| 503 | end;
|
---|
| 504 | end;
|
---|
| 505 |
|
---|
| 506 | param_list = [param_list param];
|
---|
| 507 | iter = iter + 1;
|
---|
| 508 |
|
---|
| 509 | end;
|
---|
| 510 |
|
---|
| 511 | fprintf(1,'done\n');
|
---|
| 512 |
|
---|
| 513 |
|
---|
| 514 |
|
---|
| 515 | %%%--------------------------- Computation of the error of estimation:
|
---|
| 516 |
|
---|
| 517 | fprintf(1,'Estimation of uncertainties...');
|
---|
| 518 |
|
---|
| 519 |
|
---|
| 520 | check_active_images;
|
---|
| 521 |
|
---|
| 522 | solution = param;
|
---|
| 523 |
|
---|
| 524 |
|
---|
| 525 | % Extraction of the paramters for computing the right reprojection error:
|
---|
| 526 |
|
---|
| 527 | fc = solution(1:2);
|
---|
| 528 | cc = solution(3:4);
|
---|
| 529 | alpha_c = solution(5);
|
---|
| 530 | kc = solution(6:10);
|
---|
| 531 |
|
---|
| 532 | for kk = 1:n_ima,
|
---|
| 533 |
|
---|
| 534 | if active_images(kk),
|
---|
| 535 |
|
---|
| 536 | omckk = solution(15+6*(kk-1) + 1:15+6*(kk-1) + 3);%***
|
---|
| 537 | Tckk = solution(15+6*(kk-1) + 4:15+6*(kk-1) + 6);%***
|
---|
| 538 | Rckk = rodrigues(omckk);
|
---|
| 539 |
|
---|
| 540 | else
|
---|
| 541 |
|
---|
| 542 | omckk = NaN*ones(3,1);
|
---|
| 543 | Tckk = NaN*ones(3,1);
|
---|
| 544 | Rckk = NaN*ones(3,3);
|
---|
| 545 |
|
---|
| 546 | end;
|
---|
| 547 |
|
---|
| 548 | eval(['omc_' num2str(kk) ' = omckk;']);
|
---|
| 549 | eval(['Rc_' num2str(kk) ' = Rckk;']);
|
---|
| 550 | eval(['Tc_' num2str(kk) ' = Tckk;']);
|
---|
| 551 |
|
---|
| 552 | end;
|
---|
| 553 |
|
---|
| 554 |
|
---|
| 555 | % Recompute the error (in the vector ex):
|
---|
| 556 | comp_error_calib;
|
---|
| 557 |
|
---|
| 558 | sigma_x = std(ex(:));
|
---|
| 559 |
|
---|
| 560 | % Compute the size of the Jacobian matrix:
|
---|
| 561 | N_points_views_active = N_points_views(ind_active);
|
---|
| 562 |
|
---|
| 563 | JJ3 = sparse([],[],[],15 + 6*n_ima,15 + 6*n_ima,126*n_ima + 225);
|
---|
| 564 |
|
---|
| 565 | for kk = ind_active,
|
---|
| 566 |
|
---|
| 567 | omckk = param(15+6*(kk-1) + 1:15+6*(kk-1) + 3);
|
---|
| 568 | Tckk = param(15+6*(kk-1) + 4:15+6*(kk-1) + 6);
|
---|
| 569 |
|
---|
| 570 | eval(['X_kk = X_' num2str(kk) ';']);
|
---|
| 571 |
|
---|
| 572 | Np = N_points_views(kk);
|
---|
| 573 |
|
---|
| 574 | %[x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points2(X_kk,omckk,Tckk,fc,cc,kc,alpha_c);
|
---|
| 575 |
|
---|
| 576 | if ~est_aspect_ratio,
|
---|
| 577 | [x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points2(X_kk,omckk,Tckk,fc(1),cc,kc,alpha_c);
|
---|
| 578 | dxdf = repmat(dxdf,[1 2]);
|
---|
| 579 | else
|
---|
| 580 | [x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points2(X_kk,omckk,Tckk,fc,cc,kc,alpha_c);
|
---|
| 581 | end;
|
---|
| 582 |
|
---|
| 583 | A = [dxdf dxdc dxdalpha dxdk]';
|
---|
| 584 | B = [dxdom dxdT]';
|
---|
| 585 |
|
---|
| 586 | JJ3(1:10,1:10) = JJ3(1:10,1:10) + sparse(A*A');
|
---|
| 587 | JJ3(15+6*(kk-1) + 1:15+6*(kk-1) + 6,15+6*(kk-1) + 1:15+6*(kk-1) + 6) = sparse(B*B');
|
---|
| 588 |
|
---|
| 589 | AB = sparse(A*B');
|
---|
| 590 | JJ3(1:10,15+6*(kk-1) + 1:15+6*(kk-1) + 6) = AB;
|
---|
| 591 | JJ3(15+6*(kk-1) + 1:15+6*(kk-1) + 6,1:10) = (AB)';
|
---|
| 592 |
|
---|
| 593 | end;
|
---|
| 594 |
|
---|
| 595 | JJ3 = JJ3(ind_Jac,ind_Jac);
|
---|
| 596 |
|
---|
| 597 | JJ2_inv = inv(JJ3); % not bad for sparse matrices!!
|
---|
| 598 |
|
---|
| 599 | param_error = zeros(6*n_ima+15,1);
|
---|
| 600 | param_error(ind_Jac) = 3*sqrt(full(diag(JJ2_inv)))*sigma_x;
|
---|
| 601 |
|
---|
| 602 | solution_error = param_error;
|
---|
| 603 |
|
---|
| 604 | if ~est_aspect_ratio & isequal(est_fc,[1;1]),
|
---|
| 605 | solution_error(2) = solution_error(1);
|
---|
| 606 | end;
|
---|
| 607 |
|
---|
| 608 |
|
---|
| 609 | %%% Extraction of the final intrinsic and extrinsic paramaters:
|
---|
| 610 |
|
---|
| 611 | extract_parameters;
|
---|
| 612 |
|
---|
| 613 | fprintf(1,'done\n');
|
---|
| 614 |
|
---|
| 615 |
|
---|
| 616 | fprintf(1,'\n\nCalibration results after optimization (with uncertainties):\n\n');
|
---|
| 617 | fprintf(1,'Focal Length: fc = [ %3.5f %3.5f ] ? [ %3.5f %3.5f ]\n',[fc;fc_error]);
|
---|
| 618 | fprintf(1,'Principal point: cc = [ %3.5f %3.5f ] ? [ %3.5f %3.5f ]\n',[cc;cc_error]);
|
---|
| 619 | fprintf(1,'Skew: alpha_c = [ %3.5f ] ? [ %3.5f ] => angle of pixel axes = %3.5f ? %3.5f degrees\n',[alpha_c;alpha_c_error],90 - atan(alpha_c)*180/pi,atan(alpha_c_error)*180/pi);
|
---|
| 620 | fprintf(1,'Distortion: kc = [ %3.5f %3.5f %3.5f %3.5f %5.5f ] ? [ %3.5f %3.5f %3.5f %3.5f %5.5f ]\n',[kc;kc_error]);
|
---|
| 621 | fprintf(1,'Pixel error: err = [ %3.5f %3.5f ]\n\n',err_std);
|
---|
| 622 | fprintf(1,'Note: The numerical errors are approximately three times the standard deviations (for reference).\n\n\n')
|
---|
| 623 | %fprintf(1,' For accurate (and stable) error estimates, it is recommended to run Calibration once again.\n\n\n')
|
---|
| 624 |
|
---|
| 625 |
|
---|
| 626 |
|
---|
| 627 | %%% Some recommendations to the user to reject some of the difficult unkowns... Still in debug mode.
|
---|
| 628 |
|
---|
| 629 | alpha_c_min = alpha_c - alpha_c_error/2;
|
---|
| 630 | alpha_c_max = alpha_c + alpha_c_error/2;
|
---|
| 631 |
|
---|
| 632 | if (alpha_c_min < 0) & (alpha_c_max > 0),
|
---|
| 633 | fprintf(1,'Recommendation: The skew coefficient alpha_c is found to be equal to zero (within its uncertainty).\n');
|
---|
| 634 | fprintf(1,' You may want to reject it from the optimization by setting est_alpha=0 and run Calibration\n\n');
|
---|
| 635 | end;
|
---|
| 636 |
|
---|
| 637 | kc_min = kc - kc_error/2;
|
---|
| 638 | kc_max = kc + kc_error/2;
|
---|
| 639 |
|
---|
| 640 | prob_kc = (kc_min < 0) & (kc_max > 0);
|
---|
| 641 |
|
---|
| 642 | if ~(prob_kc(3) & prob_kc(4))
|
---|
| 643 | prob_kc(3:4) = [0;0];
|
---|
| 644 | end;
|
---|
| 645 |
|
---|
| 646 |
|
---|
| 647 | if sum(prob_kc),
|
---|
| 648 | fprintf(1,'Recommendation: Some distortion coefficients are found equal to zero (within their uncertainties).\n');
|
---|
| 649 | fprintf(1,' To reject them from the optimization set est_dist=[%d;%d;%d;%d;%d] and run Calibration\n\n',est_dist & ~prob_kc);
|
---|
| 650 | end;
|
---|
| 651 |
|
---|
| 652 |
|
---|
[810] | 653 | return;
|
---|