source: trunk/src/toolbox_calib/go_calib_optim_iter.m @ 770

Last change on this file since 770 was 725, checked in by sommeria, 11 years ago

toolbox_calib added to svn

File size: 19.8 KB
Line 
1%go_calib_optim_iter
2%
3%Main calibration function. Computes the intrinsic andextrinsic parameters.
4%Runs as a script.
5%
6%INPUT: x_1,x_2,x_3,...: Feature locations on the images
7%       X_1,X_2,X_3,...: Corresponding grid coordinates
8%
9%OUTPUT: fc: Camera focal length
10%        cc: Principal point coordinates
11%        alpha_c: Skew coefficient
12%        kc: Distortion coefficients
13%        KK: The camera matrix (containing fc and cc)
14%        omc_1,omc_2,omc_3,...: 3D rotation vectors attached to the grid positions in space
15%        Tc_1,Tc_2,Tc_3,...: 3D translation vectors attached to the grid positions in space
16%        Rc_1,Rc_2,Rc_3,...: 3D rotation matrices corresponding to the omc vectors
17%
18%Method: Minimizes the pixel reprojection error in the least squares sense over the intrinsic
19%        camera parameters, and the extrinsic parameters (3D locations of the grids in space)
20%
21%Note: If the intrinsic camera parameters (fc, cc, kc) do not exist before, they are initialized through
22%      the function init_intrinsic_param.m. Otherwise, the variables in memory are used as initial guesses.
23%
24%Note: The row vector active_images consists of zeros and ones. To deactivate an image, set the
25%      corresponding entry in the active_images vector to zero.
26%
27%VERY IMPORTANT: This function works for 2D and 3D calibration rigs, except for init_intrinsic_param.m
28%that is so far implemented to work only with 2D rigs.
29%In the future, a more general function will be there.
30%For now, if using a 3D calibration rig, quick_init is set to 1 for an easy initialization of the focal length
31
32if ~exist('desactivated_images'),
33    desactivated_images = [];
34end;
35
36
37
38if ~exist('est_aspect_ratio'),
39    est_aspect_ratio = 1;
40end;
41
42if ~exist('est_fc');
43    est_fc = [1;1]; % Set to zero if you do not want to estimate the focal length (it may be useful! believe it or not!)
44end;
45
46if ~exist('recompute_extrinsic'),
47    recompute_extrinsic = 1; % Set this variable to 0 in case you do not want to recompute the extrinsic parameters
48    % at each iterstion.
49end;
50
51if ~exist('MaxIter'),
52    MaxIter = 30; % Maximum number of iterations in the gradient descent
53end;
54
55if ~exist('check_cond'),
56    check_cond = 1; % Set this variable to 0 in case you don't want to extract view dynamically
57end;
58
59if ~exist('center_optim'),
60    center_optim = 1; %%% Set this variable to 0 if your do not want to estimate the principal point
61end;
62
63if exist('est_dist'),
64    if length(est_dist) == 4,
65        est_dist = [est_dist ; 0];
66    end;
67end;
68
69if ~exist('est_dist'),
70    est_dist = [1;1;1;1;0];
71end;
72
73if ~exist('est_alpha'),
74    est_alpha = 0; % by default, do not estimate skew
75end;
76
77
78% Little fix in case of stupid values in the binary variables:
79center_optim = double(~~center_optim);
80est_alpha = double(~~est_alpha);
81est_dist = double(~~est_dist);
82est_fc = double(~~est_fc);
83est_aspect_ratio = double(~~est_aspect_ratio);
84
85
86
87fprintf(1,'\n');
88
89if ~exist('nx')&~exist('ny'),
90    fprintf(1,'WARNING: No image size (nx,ny) available. Setting nx=640 and ny=480. If these are not the right values, change values manually.\n');
91    nx = 640;
92    ny = 480;
93end;
94
95
96check_active_images;
97
98quick_init = 0; % Set to 1 for using a quick init (necessary when using 3D rigs)
99
100
101% Check 3D-ness of the calibration rig:
102rig3D = 0;
103for kk = ind_active,
104    eval(['X_kk = X_' num2str(kk) ';']);
105    if is3D(X_kk),
106        rig3D = 1;
107    end;
108end;
109
110
111if center_optim & (length(ind_active) < 2) & ~rig3D,
112    fprintf(1,'WARNING: Principal point rejected from the optimization when using one image and planar rig (center_optim = 1).\n');
113    center_optim = 0; %%% when using a single image, please, no principal point estimation!!!
114    est_alpha = 0;
115end;
116
117if ~exist('dont_ask'),
118    dont_ask = 0;
119end;
120
121if center_optim & (length(ind_active) < 5) & ~rig3D,
122    fprintf(1,'WARNING: The principal point estimation may be unreliable (using less than 5 images for calibration).\n');
123    %if ~dont_ask,
124    %   quest = input('Are you sure you want to keep the principal point in the optimization process? ([]=yes, other=no) ');
125    %   center_optim = isempty(quest);
126    %end;
127end;
128
129
130% A quick fix for solving conflict
131if ~isequal(est_fc,[1;1]),
132    est_aspect_ratio=1;
133end;
134if ~est_aspect_ratio,
135    est_fc=[1;1];
136end;
137
138
139if ~est_aspect_ratio,
140    fprintf(1,'Aspect ratio not optimized (est_aspect_ratio = 0) -> fc(1)=fc(2). Set est_aspect_ratio to 1 for estimating aspect ratio.\n');
141else
142    if isequal(est_fc,[1;1]),
143        fprintf(1,'Aspect ratio optimized (est_aspect_ratio = 1) -> both components of fc are estimated (DEFAULT).\n');
144    end;
145end;
146
147if ~isequal(est_fc,[1;1]),
148    if isequal(est_fc,[1;0]),
149        fprintf(1,'The first component of focal (fc(1)) is estimated, but not the second one (est_fc=[1;0])\n');
150    else
151        if isequal(est_fc,[0;1]),
152            fprintf(1,'The second component of focal (fc(1)) is estimated, but not the first one (est_fc=[0;1])\n');
153        else
154            fprintf(1,'The focal vector fc is not optimized (est_fc=[0;0])\n');
155        end;
156    end;
157end;
158
159
160if ~center_optim, % In the case where the principal point is not estimated, keep it at the center of the image
161    fprintf(1,'Principal point not optimized (center_optim=0). ');
162    if ~exist('cc'),
163        fprintf(1,'It is kept at the center of the image.\n');
164        cc = [(nx-1)/2;(ny-1)/2];
165    else
166        fprintf(1,'Note: to set it in the middle of the image, clear variable cc, and run calibration again.\n');
167    end;
168else
169    fprintf(1,'Principal point optimized (center_optim=1) - (DEFAULT). To reject principal point, set center_optim=0\n');
170end;
171
172
173if ~center_optim & (est_alpha),
174    fprintf(1,'WARNING: Since there is no principal point estimation (center_optim=0), no skew estimation (est_alpha = 0)\n');
175    est_alpha = 0; 
176end;
177
178if ~est_alpha,
179    fprintf(1,'Skew not optimized (est_alpha=0) - (DEFAULT)\n');
180    alpha_c = 0;
181else
182    fprintf(1,'Skew optimized (est_alpha=1). To disable skew estimation, set est_alpha=0.\n');
183end;
184
185
186if ~prod(double(est_dist)),
187    fprintf(1,'Distortion not fully estimated (defined by the variable est_dist):\n');
188    if ~est_dist(1),
189        fprintf(1,'     Second order distortion not estimated (est_dist(1)=0).\n');
190    end;
191    if ~est_dist(2),
192        fprintf(1,'     Fourth order distortion not estimated (est_dist(2)=0).\n');
193    end;
194    if ~est_dist(5),
195        fprintf(1,'     Sixth order distortion not estimated (est_dist(5)=0) - (DEFAULT) .\n');
196    end;
197    if ~prod(double(est_dist(3:4))),
198        fprintf(1,'     Tangential distortion not estimated (est_dist(3:4)~=[1;1]).\n');
199    end;
200end;
201
202
203% Check 3D-ness of the calibration rig:
204rig3D = 0;
205for kk = ind_active,
206    eval(['X_kk = X_' num2str(kk) ';']);
207    if is3D(X_kk),
208        rig3D = 1;
209    end;
210end;
211
212% If the rig is 3D, then no choice: the only valid initialization is manual!
213if rig3D,
214    quick_init = 1;
215end;
216
217
218
219alpha_smooth = 0.1; % set alpha_smooth = 1; for steepest gradient descent
220% alpha_smooth = 0.01; % modified L. Gostiaux
221
222
223% Conditioning threshold for view rejection
224thresh_cond = 1e5;
225
226
227
228% Initialization of the intrinsic parameters (if necessary)
229
230if ~exist('cc'),
231    fprintf(1,'Initialization of the principal point at the center of the image.\n');
232    cc = [(nx-1)/2;(ny-1)/2];
233    alpha_smooth = 0.1; % slow convergence
234end;
235
236
237if exist('kc'),
238    if length(kc) == 4;
239        fprintf(1,'Adding a new distortion coefficient to kc -> radial distortion model up to the 6th degree');
240        kc = [kc;0];
241    end;
242end;
243
244
245
246if ~exist('alpha_c'),
247    fprintf(1,'Initialization of the image skew to zero.\n');
248    alpha_c = 0;
249    alpha_smooth = 0.1; % slow convergence
250end;
251
252if ~exist('fc')& quick_init,
253    FOV_angle = 35; % Initial camera field of view in degrees
254    fprintf(1,['Initialization of the focal length to a FOV of ' num2str(FOV_angle) ' degrees.\n']);
255    fc = (nx/2)/tan(pi*FOV_angle/360) * ones(2,1);
256    est_fc = [1;1];
257    alpha_smooth = 0.1; % slow
258end;
259
260
261if ~exist('fc'),
262    % Initialization of the intrinsic parameters:
263    fprintf(1,'Initialization of the intrinsic parameters using the vanishing points of planar patterns.\n')
264    init_intrinsic_param; % The right way to go (if quick_init is not active)!
265    alpha_smooth = 0.1; % slow convergence
266    est_fc = [1;1];
267end;
268
269
270if ~exist('kc'),
271    fprintf(1,'Initialization of the image distortion to zero.\n');
272    kc = zeros(5,1);
273    alpha_smooth = 0.1; % slow convergence
274end;
275
276if ~est_aspect_ratio,
277    fc(1) = (fc(1)+fc(2))/2;
278    fc(2) = fc(1);
279end;
280
281if ~prod(double(est_dist)),
282    % If no distortion estimated, set to zero the variables that are not estimated
283    kc = kc .* est_dist;
284end;
285
286
287if ~prod(double(est_fc)),
288    fprintf(1,'Warning: The focal length is not fully estimated (est_fc ~= [1;1])\n');
289end;
290
291
292%%% Initialization of the extrinsic parameters for global minimization:
293comp_ext_calib;
294
295
296
297%%% Initialization of the global parameter vector:
298
299init_param = [fc;cc;alpha_c;kc;zeros(5,1)];
300
301for kk = 1:n_ima,
302    eval(['omckk = omc_' num2str(kk) ';']);
303    eval(['Tckk = Tc_' num2str(kk) ';']);
304    init_param = [init_param; omckk ; Tckk];   
305end;
306
307
308
309%-------------------- Main Optimization:
310
311fprintf(1,'\nMain calibration optimization procedure - Number of images: %d\n',length(ind_active));
312
313
314param = init_param;
315change = 1;
316
317iter = 0;
318
319fprintf(1,'Gradient descent iterations: ');
320
321param_list = param;
322
323
324while (change > 1e-2)&(iter < MaxIter),
325   
326    fprintf(1,'%d...',iter+1);
327   
328    % To speed up: pre-allocate the memory for the Jacobian JJ3.
329    % For that, need to compute the total number of points.
330   
331    %% The first step consists of updating the whole vector of knowns (intrinsic + extrinsic of active
332    %% images) through a one step steepest gradient descent.
333   
334   
335    f = param(1:2);
336    c = param(3:4);
337    alpha = param(5);
338    k = param(6:10);
339   
340   
341    % Compute the size of the Jacobian matrix:
342    N_points_views_active = N_points_views(ind_active);
343   
344    JJ3 = sparse([],[],[],15 + 6*n_ima,15 + 6*n_ima,126*n_ima + 225);
345    ex3 = zeros(15 + 6*n_ima,1);
346   
347   
348    for kk = ind_active, %1:n_ima,
349        %if active_images(kk),
350       
351        omckk = param(15+6*(kk-1) + 1:15+6*(kk-1) + 3);
352       
353        Tckk = param(15+6*(kk-1) + 4:15+6*(kk-1) + 6);
354       
355        if isnan(omckk(1)),
356            fprintf(1,'Intrinsic parameters at frame %d do not exist\n',kk);
357            return;
358        end;
359       
360        eval(['X_kk = X_' num2str(kk) ';']);
361        eval(['x_kk = x_' num2str(kk) ';']);
362       
363        Np = N_points_views(kk);
364       
365        if ~est_aspect_ratio,
366            [x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points2(X_kk,omckk,Tckk,f(1),c,k,alpha);
367            dxdf = repmat(dxdf,[1 2]);
368        else
369            [x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points2(X_kk,omckk,Tckk,f,c,k,alpha);
370        end;
371       
372        exkk = x_kk - x;
373       
374        A = [dxdf dxdc dxdalpha dxdk]';
375        B = [dxdom dxdT]';
376       
377        JJ3(1:10,1:10) = JJ3(1:10,1:10) + sparse(A*A');
378        JJ3(15+6*(kk-1) + 1:15+6*(kk-1) + 6,15+6*(kk-1) + 1:15+6*(kk-1) + 6) = sparse(B*B');
379       
380        AB = sparse(A*B');
381        JJ3(1:10,15+6*(kk-1) + 1:15+6*(kk-1) + 6) = AB;
382        JJ3(15+6*(kk-1) + 1:15+6*(kk-1) + 6,1:10) = (AB)';
383       
384        ex3(1:10) = ex3(1:10) + A*exkk(:);
385        ex3(15+6*(kk-1) + 1:15+6*(kk-1) + 6) = B*exkk(:);
386       
387        % Check if this view is ill-conditioned:
388        if check_cond,
389            JJ_kk = B'; %[dxdom dxdT];
390            if (cond(JJ_kk)> thresh_cond),
391                active_images(kk) = 0;
392                fprintf(1,'\nWarning: View #%d ill-conditioned. This image is now set inactive. (note: to disactivate this option, set check_cond=0)\n',kk)
393                desactivated_images = [desactivated_images kk];
394                param(15+6*(kk-1) + 1:15+6*(kk-1) + 6) = NaN*ones(6,1);
395            end;
396        end;
397       
398        %end;
399       
400    end;
401   
402   
403    % List of active images (necessary if changed):
404    check_active_images;
405   
406   
407    % The following vector helps to select the variables to update (for only active images):
408    selected_variables = [est_fc;center_optim*ones(2,1);est_alpha;est_dist;zeros(5,1);reshape(ones(6,1)*active_images,6*n_ima,1)];
409    if ~est_aspect_ratio,
410        if isequal(est_fc,[1;1]) | isequal(est_fc,[1;0]),
411            selected_variables(2) = 0;
412        end;
413    end;
414    ind_Jac = find(selected_variables)';
415   
416    JJ3 = JJ3(ind_Jac,ind_Jac);
417    ex3 = ex3(ind_Jac);
418   
419    JJ2_inv = inv(JJ3); % not bad for sparse matrices!!
420   
421   
422    % Smoothing coefficient:
423   
424    alpha_smooth2 = 1-(1-alpha_smooth)^(iter+1); %set to 1 to undo any smoothing!
425   
426    param_innov = alpha_smooth2*JJ2_inv*ex3;
427   
428   
429    param_up = param(ind_Jac) + param_innov;
430    param(ind_Jac) = param_up;
431   
432   
433    % New intrinsic parameters:
434   
435    fc_current = param(1:2);
436    cc_current = param(3:4);
437
438    if center_optim & ((param(3)<0)|(param(3)>nx)|(param(4)<0)|(param(4)>ny)),
439        fprintf(1,'Warning: it appears that the principal point cannot be estimated. Setting center_optim = 0\n');
440        center_optim = 0;
441        cc_current = c;
442    else
443        cc_current = param(3:4);
444    end;
445   
446    alpha_current = param(5);
447    kc_current = param(6:10);
448   
449    if ~est_aspect_ratio & isequal(est_fc,[1;1]),
450        fc_current(2) = fc_current(1);
451        param(2) = param(1);
452    end;
453   
454    % Change on the intrinsic parameters:
455    change = norm([fc_current;cc_current] - [f;c])/norm([fc_current;cc_current]);
456   
457   
458    %% Second step: (optional) - It makes convergence faster, and the region of convergence LARGER!!!
459    %% Recompute the extrinsic parameters only using compute_extrinsic.m (this may be useful sometimes)
460    %% The complete gradient descent method is useful to precisely update the intrinsic parameters.
461   
462   
463    if recompute_extrinsic,
464        MaxIter2 = 20;
465        for kk =ind_active, %1:n_ima,
466            %if active_images(kk),
467            omc_current = param(15+6*(kk-1) + 1:15+6*(kk-1) + 3);
468            Tc_current = param(15+6*(kk-1) + 4:15+6*(kk-1) + 6);
469            eval(['X_kk = X_' num2str(kk) ';']);
470            eval(['x_kk = x_' num2str(kk) ';']);
471            [omc_current,Tc_current] = compute_extrinsic_init(x_kk,X_kk,fc_current,cc_current,kc_current,alpha_current);
472            [omckk,Tckk,Rckk,JJ_kk] = compute_extrinsic_refine(omc_current,Tc_current,x_kk,X_kk,fc_current,cc_current,kc_current,alpha_current,MaxIter2,thresh_cond);
473            if check_cond,
474                if (cond(JJ_kk)> thresh_cond),
475                    active_images(kk) = 0;
476                    fprintf(1,'\nWarning: View #%d ill-conditioned. This image is now set inactive. (note: to disactivate this option, set check_cond=0)\n',kk);
477                    desactivated_images = [desactivated_images kk];
478                    omckk = NaN*ones(3,1);
479                    Tckk = NaN*ones(3,1);
480                end;
481            end;
482            param(15+6*(kk-1) + 1:15+6*(kk-1) + 3) = omckk;
483            param(15+6*(kk-1) + 4:15+6*(kk-1) + 6) = Tckk;
484            %end;
485        end;
486    end;
487   
488    param_list = [param_list param];
489    iter = iter + 1;
490   
491end;
492
493fprintf(1,'done\n');
494
495
496
497%%%--------------------------- Computation of the error of estimation:
498
499fprintf(1,'Estimation of uncertainties...');
500
501
502check_active_images;
503
504solution = param;
505
506
507% Extraction of the paramters for computing the right reprojection error:
508
509fc = solution(1:2);
510cc = solution(3:4);
511alpha_c = solution(5);
512kc = solution(6:10);
513
514for kk = 1:n_ima,
515   
516    if active_images(kk),
517       
518        omckk = solution(15+6*(kk-1) + 1:15+6*(kk-1) + 3);%***   
519        Tckk = solution(15+6*(kk-1) + 4:15+6*(kk-1) + 6);%***
520        Rckk = rodrigues(omckk);
521       
522    else
523       
524        omckk = NaN*ones(3,1);   
525        Tckk = NaN*ones(3,1);
526        Rckk = NaN*ones(3,3);
527       
528    end;
529   
530    eval(['omc_' num2str(kk) ' = omckk;']);
531    eval(['Rc_' num2str(kk) ' = Rckk;']);
532    eval(['Tc_' num2str(kk) ' = Tckk;']);
533   
534end;
535
536
537% Recompute the error (in the vector ex):
538comp_error_calib;
539
540sigma_x = std(ex(:));
541
542% Compute the size of the Jacobian matrix:
543N_points_views_active = N_points_views(ind_active);
544
545JJ3 = sparse([],[],[],15 + 6*n_ima,15 + 6*n_ima,126*n_ima + 225);
546
547for kk = ind_active,
548   
549    omckk = param(15+6*(kk-1) + 1:15+6*(kk-1) + 3);
550    Tckk = param(15+6*(kk-1) + 4:15+6*(kk-1) + 6);
551   
552    eval(['X_kk = X_' num2str(kk) ';']);
553   
554    Np = N_points_views(kk);
555   
556    %[x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points2(X_kk,omckk,Tckk,fc,cc,kc,alpha_c);
557   
558    if ~est_aspect_ratio,
559        [x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points2(X_kk,omckk,Tckk,fc(1),cc,kc,alpha_c);
560        dxdf = repmat(dxdf,[1 2]);
561    else
562        [x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points2(X_kk,omckk,Tckk,fc,cc,kc,alpha_c);
563    end;
564   
565    A = [dxdf dxdc dxdalpha dxdk]';
566    B = [dxdom dxdT]';
567   
568    JJ3(1:10,1:10) = JJ3(1:10,1:10) + sparse(A*A');
569    JJ3(15+6*(kk-1) + 1:15+6*(kk-1) + 6,15+6*(kk-1) + 1:15+6*(kk-1) + 6) = sparse(B*B');
570   
571    AB = sparse(A*B');
572    JJ3(1:10,15+6*(kk-1) + 1:15+6*(kk-1) + 6) = AB;
573    JJ3(15+6*(kk-1) + 1:15+6*(kk-1) + 6,1:10) = (AB)';
574   
575end;
576
577JJ3 = JJ3(ind_Jac,ind_Jac);
578
579JJ2_inv = inv(JJ3); % not bad for sparse matrices!!
580
581param_error = zeros(6*n_ima+15,1);
582param_error(ind_Jac) =  3*sqrt(full(diag(JJ2_inv)))*sigma_x;
583
584solution_error = param_error;
585
586if ~est_aspect_ratio & isequal(est_fc,[1;1]),
587    solution_error(2) = solution_error(1);
588end;
589
590
591%%% Extraction of the final intrinsic and extrinsic paramaters:
592
593extract_parameters;
594
595fprintf(1,'done\n');
596
597
598fprintf(1,'\n\nCalibration results after optimization (with uncertainties):\n\n');
599fprintf(1,'Focal Length:          fc = [ %3.5f   %3.5f ] ? [ %3.5f   %3.5f ]\n',[fc;fc_error]);
600fprintf(1,'Principal point:       cc = [ %3.5f   %3.5f ] ? [ %3.5f   %3.5f ]\n',[cc;cc_error]);
601fprintf(1,'Skew:             alpha_c = [ %3.5f ] ? [ %3.5f  ]   => angle of pixel axes = %3.5f ? %3.5f degrees\n',[alpha_c;alpha_c_error],90 - atan(alpha_c)*180/pi,atan(alpha_c_error)*180/pi);
602fprintf(1,'Distortion:            kc = [ %3.5f   %3.5f   %3.5f   %3.5f  %5.5f ] ? [ %3.5f   %3.5f   %3.5f   %3.5f  %5.5f ]\n',[kc;kc_error]);   
603fprintf(1,'Pixel error:          err = [ %3.5f   %3.5f ]\n\n',err_std);
604fprintf(1,'Note: The numerical errors are approximately three times the standard deviations (for reference).\n\n\n')
605%fprintf(1,'      For accurate (and stable) error estimates, it is recommended to run Calibration once again.\n\n\n')
606
607
608
609%%% Some recommendations to the user to reject some of the difficult unkowns... Still in debug mode.
610
611alpha_c_min = alpha_c - alpha_c_error/2;
612alpha_c_max = alpha_c + alpha_c_error/2;
613
614if (alpha_c_min < 0) & (alpha_c_max > 0),
615    fprintf(1,'Recommendation: The skew coefficient alpha_c is found to be equal to zero (within its uncertainty).\n');
616    fprintf(1,'                You may want to reject it from the optimization by setting est_alpha=0 and run Calibration\n\n');
617end;
618
619kc_min = kc - kc_error/2;
620kc_max = kc + kc_error/2;
621
622prob_kc = (kc_min < 0) & (kc_max > 0);
623
624if ~(prob_kc(3) & prob_kc(4))
625    prob_kc(3:4) = [0;0];
626end;
627
628
629if sum(prob_kc),
630    fprintf(1,'Recommendation: Some distortion coefficients are found equal to zero (within their uncertainties).\n');
631    fprintf(1,'                To reject them from the optimization set est_dist=[%d;%d;%d;%d;%d] and run Calibration\n\n',est_dist & ~prob_kc);
632end;
633
634
635return;
Note: See TracBrowser for help on using the repository browser.