[810] | 1 | %=======================================================================
|
---|
| 2 | % Copyright 2008-2014, LEGI UMR 5519 / CNRS UJF G-INP, Grenoble, France
|
---|
| 3 | % http://www.legi.grenoble-inp.fr
|
---|
| 4 | % Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr
|
---|
| 5 | %
|
---|
| 6 | % This file is part of the toolbox UVMAT.
|
---|
| 7 | %
|
---|
| 8 | % UVMAT is free software; you can redistribute it and/or modify
|
---|
| 9 | % it under the terms of the GNU General Public License as published
|
---|
| 10 | % by the Free Software Foundation; either version 2 of the license,
|
---|
| 11 | % or (at your option) any later version.
|
---|
| 12 | %
|
---|
| 13 | % UVMAT is distributed in the hope that it will be useful,
|
---|
| 14 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | % GNU General Public License (see LICENSE.txt) for more details.
|
---|
| 17 | %=======================================================================
|
---|
| 18 |
|
---|
[725] | 19 | %init_intrinsic_param
|
---|
| 20 | %
|
---|
| 21 | %Initialization of the intrinsic parameters.
|
---|
| 22 | %Runs as a script.
|
---|
| 23 | %
|
---|
| 24 | %INPUT: x_1,x_2,x_3,...: Feature locations on the images
|
---|
| 25 | % X_1,X_2,X_3,...: Corresponding grid coordinates
|
---|
| 26 | %
|
---|
| 27 | %OUTPUT: fc: Camera focal length
|
---|
| 28 | % cc: Principal point coordinates
|
---|
| 29 | % kc: Distortion coefficients
|
---|
| 30 | % alpha_c: skew coefficient
|
---|
| 31 | % KK: The camera matrix (containing fc, cc and alpha_c)
|
---|
| 32 | %
|
---|
| 33 | %Method: Computes the planar homographies H_1, H_2, H_3, ... and computes
|
---|
| 34 | % the focal length fc from orthogonal vanishing points constraint.
|
---|
| 35 | % The principal point cc is assumed at the center of the image.
|
---|
| 36 | % Assumes no image distortion (kc = [0;0;0;0])
|
---|
| 37 | %
|
---|
| 38 | %Note: The row vector active_images consists of zeros and ones. To deactivate an image, set the
|
---|
| 39 | % corresponding entry in the active_images vector to zero.
|
---|
| 40 | %
|
---|
| 41 | %
|
---|
| 42 | %Important function called within that program:
|
---|
| 43 | %
|
---|
| 44 | %compute_homography.m: Computes the planar homography between points on the grid in 3D, and the image plane.
|
---|
| 45 | %
|
---|
| 46 | %
|
---|
| 47 | %VERY IMPORTANT: This function works only with 2D rigs.
|
---|
| 48 | %In the future, a more general function will be there (working with 3D rigs as well).
|
---|
| 49 |
|
---|
| 50 |
|
---|
| 51 | if ~exist('two_focals_init'),
|
---|
| 52 | two_focals_init = 0;
|
---|
| 53 | end;
|
---|
| 54 |
|
---|
| 55 | if ~exist('est_aspect_ratio'),
|
---|
| 56 | est_aspect_ratio = 1;
|
---|
| 57 | end;
|
---|
| 58 |
|
---|
| 59 | check_active_images;
|
---|
| 60 |
|
---|
| 61 | if ~exist(['x_' num2str(ind_active(1)) ]),
|
---|
| 62 | click_calib;
|
---|
| 63 | end;
|
---|
| 64 |
|
---|
| 65 |
|
---|
| 66 | fprintf(1,'\nInitialization of the intrinsic parameters - Number of images: %d\n',length(ind_active));
|
---|
| 67 |
|
---|
| 68 |
|
---|
| 69 | % Initialize the homographies:
|
---|
| 70 |
|
---|
| 71 | for kk = 1:n_ima,
|
---|
| 72 | eval(['x_kk = x_' num2str(kk) ';']);
|
---|
| 73 | eval(['X_kk = X_' num2str(kk) ';']);
|
---|
| 74 | if (isnan(x_kk(1,1))),
|
---|
| 75 | if active_images(kk),
|
---|
| 76 | fprintf(1,'WARNING: Cannot calibrate with image %d. Need to extract grid corners first.\n',kk)
|
---|
| 77 | fprintf(1,' Set active_images(%d)=1; and run Extract grid corners.\n',kk)
|
---|
| 78 | end;
|
---|
| 79 | active_images(kk) = 0;
|
---|
| 80 | end;
|
---|
| 81 | if active_images(kk),
|
---|
| 82 | eval(['H_' num2str(kk) ' = compute_homography(x_kk,X_kk(1:2,:));']);
|
---|
| 83 | else
|
---|
| 84 | eval(['H_' num2str(kk) ' = NaN*ones(3,3);']);
|
---|
| 85 | end;
|
---|
| 86 | end;
|
---|
| 87 |
|
---|
| 88 | check_active_images;
|
---|
| 89 |
|
---|
| 90 | % initial guess for principal point and distortion:
|
---|
| 91 |
|
---|
| 92 | if ~exist('nx'), [ny,nx] = size(I); end;
|
---|
| 93 |
|
---|
| 94 | c_init = [nx;ny]/2 - 0.5; % initialize at the center of the image
|
---|
| 95 | k_init = [0;0;0;0;0]; % initialize to zero (no distortion)
|
---|
| 96 |
|
---|
| 97 |
|
---|
| 98 |
|
---|
| 99 | % Compute explicitely the focal length using all the (mutually orthogonal) vanishing points
|
---|
| 100 | % note: The vanihing points are hidden in the planar collineations H_kk
|
---|
| 101 |
|
---|
| 102 | A = [];
|
---|
| 103 | b = [];
|
---|
| 104 |
|
---|
| 105 | % matrix that subtract the principal point:
|
---|
| 106 | Sub_cc = [1 0 -c_init(1);0 1 -c_init(2);0 0 1];
|
---|
| 107 |
|
---|
| 108 | for kk=1:n_ima,
|
---|
| 109 |
|
---|
| 110 | if active_images(kk),
|
---|
| 111 |
|
---|
| 112 | eval(['Hkk = H_' num2str(kk) ';']);
|
---|
| 113 |
|
---|
| 114 | Hkk = Sub_cc * Hkk;
|
---|
| 115 |
|
---|
| 116 | % Extract vanishing points (direct and diagonals):
|
---|
| 117 |
|
---|
| 118 | V_hori_pix = Hkk(:,1);
|
---|
| 119 | V_vert_pix = Hkk(:,2);
|
---|
| 120 | V_diag1_pix = (Hkk(:,1)+Hkk(:,2))/2;
|
---|
| 121 | V_diag2_pix = (Hkk(:,1)-Hkk(:,2))/2;
|
---|
| 122 |
|
---|
| 123 | V_hori_pix = V_hori_pix/norm(V_hori_pix);
|
---|
| 124 | V_vert_pix = V_vert_pix/norm(V_vert_pix);
|
---|
| 125 | V_diag1_pix = V_diag1_pix/norm(V_diag1_pix);
|
---|
| 126 | V_diag2_pix = V_diag2_pix/norm(V_diag2_pix);
|
---|
| 127 |
|
---|
| 128 | a1 = V_hori_pix(1);
|
---|
| 129 | b1 = V_hori_pix(2);
|
---|
| 130 | c1 = V_hori_pix(3);
|
---|
| 131 |
|
---|
| 132 | a2 = V_vert_pix(1);
|
---|
| 133 | b2 = V_vert_pix(2);
|
---|
| 134 | c2 = V_vert_pix(3);
|
---|
| 135 |
|
---|
| 136 | a3 = V_diag1_pix(1);
|
---|
| 137 | b3 = V_diag1_pix(2);
|
---|
| 138 | c3 = V_diag1_pix(3);
|
---|
| 139 |
|
---|
| 140 | a4 = V_diag2_pix(1);
|
---|
| 141 | b4 = V_diag2_pix(2);
|
---|
| 142 | c4 = V_diag2_pix(3);
|
---|
| 143 |
|
---|
| 144 | A_kk = [a1*a2 b1*b2;
|
---|
| 145 | a3*a4 b3*b4];
|
---|
| 146 |
|
---|
| 147 | b_kk = -[c1*c2;c3*c4];
|
---|
| 148 |
|
---|
| 149 |
|
---|
| 150 | A = [A;A_kk];
|
---|
| 151 | b = [b;b_kk];
|
---|
| 152 |
|
---|
| 153 | end;
|
---|
| 154 |
|
---|
| 155 | end;
|
---|
| 156 |
|
---|
| 157 |
|
---|
| 158 | % use all the vanishing points to estimate focal length:
|
---|
| 159 |
|
---|
| 160 |
|
---|
| 161 | % Select the model for the focal. (solution to Gerd's problem)
|
---|
| 162 | if ~two_focals_init
|
---|
| 163 | if b'*(sum(A')') < 0,
|
---|
| 164 | two_focals_init = 1;
|
---|
| 165 | end;
|
---|
| 166 | end;
|
---|
| 167 |
|
---|
| 168 |
|
---|
| 169 |
|
---|
| 170 | if two_focals_init
|
---|
| 171 | % Use a two focals estimate:
|
---|
| 172 | f_init = sqrt(abs(1./(inv(A'*A)*A'*b))); % if using a two-focal model for initial guess
|
---|
| 173 | else
|
---|
| 174 | % Use a single focal estimate:
|
---|
| 175 | f_init = sqrt(b'*(sum(A')') / (b'*b)) * ones(2,1); % if single focal length model is used
|
---|
| 176 | end;
|
---|
| 177 |
|
---|
| 178 |
|
---|
| 179 | if ~est_aspect_ratio,
|
---|
| 180 | f_init(1) = (f_init(1)+f_init(2))/2;
|
---|
| 181 | f_init(2) = f_init(1);
|
---|
| 182 | end;
|
---|
| 183 |
|
---|
| 184 | alpha_init = 0;
|
---|
| 185 |
|
---|
| 186 | %f_init = sqrt(b'*(sum(A')') / (b'*b)) * ones(2,1); % if single focal length model is used
|
---|
| 187 |
|
---|
| 188 |
|
---|
| 189 | % Global calibration matrix (initial guess):
|
---|
| 190 |
|
---|
| 191 | KK = [f_init(1) alpha_init*f_init(1) c_init(1);0 f_init(2) c_init(2); 0 0 1];
|
---|
| 192 | inv_KK = inv(KK);
|
---|
| 193 |
|
---|
| 194 |
|
---|
| 195 | cc = c_init;
|
---|
| 196 | fc = f_init;
|
---|
| 197 | kc = k_init;
|
---|
| 198 | alpha_c = alpha_init;
|
---|
| 199 |
|
---|
| 200 |
|
---|
| 201 | fprintf(1,'\n\nCalibration parameters after initialization:\n\n');
|
---|
| 202 | fprintf(1,'Focal Length: fc = [ %3.5f %3.5f ]\n',fc);
|
---|
| 203 | fprintf(1,'Principal point: cc = [ %3.5f %3.5f ]\n',cc);
|
---|
| 204 | fprintf(1,'Skew: alpha_c = [ %3.5f ] => angle of pixel = %3.5f degrees\n',alpha_c,90 - atan(alpha_c)*180/pi);
|
---|
| 205 | fprintf(1,'Distortion: kc = [ %3.5f %3.5f %3.5f %3.5f %5.5f ]\n',kc);
|
---|