%init_intrinsic_param % %Initialization of the intrinsic parameters. %Runs as a script. % %INPUT: x_1,x_2,x_3,...: Feature locations on the images % X_1,X_2,X_3,...: Corresponding grid coordinates % %OUTPUT: fc: Camera focal length % cc: Principal point coordinates % kc: Distortion coefficients % alpha_c: skew coefficient % KK: The camera matrix (containing fc, cc and alpha_c) % %Method: Computes the planar homographies H_1, H_2, H_3, ... and computes % the focal length fc from orthogonal vanishing points constraint. % The principal point cc is assumed at the center of the image. % Assumes no image distortion (kc = [0;0;0;0]) % %Note: The row vector active_images consists of zeros and ones. To deactivate an image, set the % corresponding entry in the active_images vector to zero. % % %Important function called within that program: % %compute_homography.m: Computes the planar homography between points on the grid in 3D, and the image plane. % % %VERY IMPORTANT: This function works only with 2D rigs. %In the future, a more general function will be there (working with 3D rigs as well). if ~exist('two_focals_init'), two_focals_init = 0; end; if ~exist('est_aspect_ratio'), est_aspect_ratio = 1; end; check_active_images; if ~exist(['x_' num2str(ind_active(1)) ]), click_calib; end; fprintf(1,'\nInitialization of the intrinsic parameters - Number of images: %d\n',length(ind_active)); % Initialize the homographies: for kk = 1:n_ima, eval(['x_kk = x_' num2str(kk) ';']); eval(['X_kk = X_' num2str(kk) ';']); if (isnan(x_kk(1,1))), if active_images(kk), fprintf(1,'WARNING: Cannot calibrate with image %d. Need to extract grid corners first.\n',kk) fprintf(1,' Set active_images(%d)=1; and run Extract grid corners.\n',kk) end; active_images(kk) = 0; end; if active_images(kk), eval(['H_' num2str(kk) ' = compute_homography(x_kk,X_kk(1:2,:));']); else eval(['H_' num2str(kk) ' = NaN*ones(3,3);']); end; end; check_active_images; % initial guess for principal point and distortion: if ~exist('nx'), [ny,nx] = size(I); end; c_init = [nx;ny]/2 - 0.5; % initialize at the center of the image k_init = [0;0;0;0;0]; % initialize to zero (no distortion) % Compute explicitely the focal length using all the (mutually orthogonal) vanishing points % note: The vanihing points are hidden in the planar collineations H_kk A = []; b = []; % matrix that subtract the principal point: Sub_cc = [1 0 -c_init(1);0 1 -c_init(2);0 0 1]; for kk=1:n_ima, if active_images(kk), eval(['Hkk = H_' num2str(kk) ';']); Hkk = Sub_cc * Hkk; % Extract vanishing points (direct and diagonals): V_hori_pix = Hkk(:,1); V_vert_pix = Hkk(:,2); V_diag1_pix = (Hkk(:,1)+Hkk(:,2))/2; V_diag2_pix = (Hkk(:,1)-Hkk(:,2))/2; V_hori_pix = V_hori_pix/norm(V_hori_pix); V_vert_pix = V_vert_pix/norm(V_vert_pix); V_diag1_pix = V_diag1_pix/norm(V_diag1_pix); V_diag2_pix = V_diag2_pix/norm(V_diag2_pix); a1 = V_hori_pix(1); b1 = V_hori_pix(2); c1 = V_hori_pix(3); a2 = V_vert_pix(1); b2 = V_vert_pix(2); c2 = V_vert_pix(3); a3 = V_diag1_pix(1); b3 = V_diag1_pix(2); c3 = V_diag1_pix(3); a4 = V_diag2_pix(1); b4 = V_diag2_pix(2); c4 = V_diag2_pix(3); A_kk = [a1*a2 b1*b2; a3*a4 b3*b4]; b_kk = -[c1*c2;c3*c4]; A = [A;A_kk]; b = [b;b_kk]; end; end; % use all the vanishing points to estimate focal length: % Select the model for the focal. (solution to Gerd's problem) if ~two_focals_init if b'*(sum(A')') < 0, two_focals_init = 1; end; end; if two_focals_init % Use a two focals estimate: f_init = sqrt(abs(1./(inv(A'*A)*A'*b))); % if using a two-focal model for initial guess else % Use a single focal estimate: f_init = sqrt(b'*(sum(A')') / (b'*b)) * ones(2,1); % if single focal length model is used end; if ~est_aspect_ratio, f_init(1) = (f_init(1)+f_init(2))/2; f_init(2) = f_init(1); end; alpha_init = 0; %f_init = sqrt(b'*(sum(A')') / (b'*b)) * ones(2,1); % if single focal length model is used % Global calibration matrix (initial guess): KK = [f_init(1) alpha_init*f_init(1) c_init(1);0 f_init(2) c_init(2); 0 0 1]; inv_KK = inv(KK); cc = c_init; fc = f_init; kc = k_init; alpha_c = alpha_init; fprintf(1,'\n\nCalibration parameters after initialization:\n\n'); fprintf(1,'Focal Length: fc = [ %3.5f %3.5f ]\n',fc); fprintf(1,'Principal point: cc = [ %3.5f %3.5f ]\n',cc); fprintf(1,'Skew: alpha_c = [ %3.5f ] => angle of pixel = %3.5f degrees\n',alpha_c,90 - atan(alpha_c)*180/pi); fprintf(1,'Distortion: kc = [ %3.5f %3.5f %3.5f %3.5f %5.5f ]\n',kc);