[810] | 1 | %=======================================================================
|
---|
| 2 | % Copyright 2008-2014, LEGI UMR 5519 / CNRS UJF G-INP, Grenoble, France
|
---|
| 3 | % http://www.legi.grenoble-inp.fr
|
---|
| 4 | % Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr
|
---|
| 5 | %
|
---|
| 6 | % This file is part of the toolbox UVMAT.
|
---|
| 7 | %
|
---|
| 8 | % UVMAT is free software; you can redistribute it and/or modify
|
---|
| 9 | % it under the terms of the GNU General Public License as published
|
---|
| 10 | % by the Free Software Foundation; either version 2 of the license,
|
---|
| 11 | % or (at your option) any later version.
|
---|
| 12 | %
|
---|
| 13 | % UVMAT is distributed in the hope that it will be useful,
|
---|
| 14 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | % GNU General Public License (see LICENSE.txt) for more details.
|
---|
| 17 | %=======================================================================
|
---|
| 18 |
|
---|
[725] | 19 | function [xp,dxpdom,dxpdT,dxpdf,dxpdc,dxpdk,dxpdalpha] = project_points2(X,om,T,f,c,k,alpha)
|
---|
| 20 |
|
---|
| 21 | %project_points2.m
|
---|
| 22 | %
|
---|
| 23 | %[xp,dxpdom,dxpdT,dxpdf,dxpdc,dxpdk] = project_points2(X,om,T,f,c,k,alpha)
|
---|
| 24 | %
|
---|
| 25 | %Projects a 3D structure onto the image plane.
|
---|
| 26 | %
|
---|
| 27 | %INPUT: X: 3D structure in the world coordinate frame (3xN matrix for N points)
|
---|
| 28 | % (om,T): Rigid motion parameters between world coordinate frame and camera reference frame
|
---|
| 29 | % om: rotation vector (3x1 vector); T: translation vector (3x1 vector)
|
---|
| 30 | % f: camera focal length in units of horizontal and vertical pixel units (2x1 vector)
|
---|
| 31 | % c: principal point location in pixel units (2x1 vector)
|
---|
| 32 | % k: Distortion coefficients (radial and tangential) (4x1 vector)
|
---|
| 33 | % alpha: Skew coefficient between x and y pixel (alpha = 0 <=> square pixels)
|
---|
| 34 | %
|
---|
| 35 | %OUTPUT: xp: Projected pixel coordinates (2xN matrix for N points)
|
---|
| 36 | % dxpdom: Derivative of xp with respect to om ((2N)x3 matrix)
|
---|
| 37 | % dxpdT: Derivative of xp with respect to T ((2N)x3 matrix)
|
---|
| 38 | % dxpdf: Derivative of xp with respect to f ((2N)x2 matrix if f is 2x1, or (2N)x1 matrix is f is a scalar)
|
---|
| 39 | % dxpdc: Derivative of xp with respect to c ((2N)x2 matrix)
|
---|
| 40 | % dxpdk: Derivative of xp with respect to k ((2N)x4 matrix)
|
---|
| 41 | %
|
---|
| 42 | %Definitions:
|
---|
| 43 | %Let P be a point in 3D of coordinates X in the world reference frame (stored in the matrix X)
|
---|
| 44 | %The coordinate vector of P in the camera reference frame is: Xc = R*X + T
|
---|
| 45 | %where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om);
|
---|
| 46 | %call x, y and z the 3 coordinates of Xc: x = Xc(1); y = Xc(2); z = Xc(3);
|
---|
| 47 | %The pinehole projection coordinates of P is [a;b] where a=x/z and b=y/z.
|
---|
| 48 | %call r^2 = a^2 + b^2.
|
---|
| 49 | %The distorted point coordinates are: xd = [xx;yy] where:
|
---|
| 50 | %
|
---|
| 51 | %xx = a * (1 + kc(1)*r^2 + kc(2)*r^4 + kc(5)*r^6) + 2*kc(3)*a*b + kc(4)*(r^2 + 2*a^2);
|
---|
| 52 | %yy = b * (1 + kc(1)*r^2 + kc(2)*r^4 + kc(5)*r^6) + kc(3)*(r^2 + 2*b^2) + 2*kc(4)*a*b;
|
---|
| 53 | %
|
---|
| 54 | %The left terms correspond to radial distortion (6th degree), the right terms correspond to tangential distortion
|
---|
| 55 | %
|
---|
| 56 | %Finally, convertion into pixel coordinates: The final pixel coordinates vector xp=[xxp;yyp] where:
|
---|
| 57 | %
|
---|
| 58 | %xxp = f(1)*(xx + alpha*yy) + c(1)
|
---|
| 59 | %yyp = f(2)*yy + c(2)
|
---|
| 60 | %
|
---|
| 61 | %
|
---|
| 62 | %NOTE: About 90 percent of the code takes care fo computing the Jacobian matrices
|
---|
| 63 | %
|
---|
| 64 | %
|
---|
| 65 | %Important function called within that program:
|
---|
| 66 | %
|
---|
| 67 | %rodrigues.m: Computes the rotation matrix corresponding to a rotation vector
|
---|
| 68 | %
|
---|
| 69 | %rigid_motion.m: Computes the rigid motion transformation of a given structure
|
---|
| 70 |
|
---|
| 71 |
|
---|
| 72 | if nargin < 7,
|
---|
| 73 | alpha = 0;
|
---|
| 74 | if nargin < 6,
|
---|
| 75 | k = zeros(5,1);
|
---|
| 76 | if nargin < 5,
|
---|
| 77 | c = zeros(2,1);
|
---|
| 78 | if nargin < 4,
|
---|
| 79 | f = ones(2,1);
|
---|
| 80 | if nargin < 3,
|
---|
| 81 | T = zeros(3,1);
|
---|
| 82 | if nargin < 2,
|
---|
| 83 | om = zeros(3,1);
|
---|
| 84 | if nargin < 1,
|
---|
| 85 | error('Need at least a 3D structure to project (in project_points.m)');
|
---|
| 86 | return;
|
---|
| 87 | end;
|
---|
| 88 | end;
|
---|
| 89 | end;
|
---|
| 90 | end;
|
---|
| 91 | end;
|
---|
| 92 | end;
|
---|
| 93 | end;
|
---|
| 94 |
|
---|
| 95 |
|
---|
| 96 | [m,n] = size(X);
|
---|
| 97 |
|
---|
| 98 | if nargout > 1,
|
---|
| 99 | [Y,dYdom,dYdT] = rigid_motion(X,om,T);
|
---|
| 100 | else
|
---|
| 101 | Y = rigid_motion(X,om,T);
|
---|
| 102 | end;
|
---|
| 103 |
|
---|
| 104 |
|
---|
| 105 | inv_Z = 1./Y(3,:);
|
---|
| 106 |
|
---|
| 107 | x = (Y(1:2,:) .* (ones(2,1) * inv_Z)) ;
|
---|
| 108 |
|
---|
| 109 |
|
---|
| 110 | bb = (-x(1,:) .* inv_Z)'*ones(1,3);
|
---|
| 111 | cc = (-x(2,:) .* inv_Z)'*ones(1,3);
|
---|
| 112 |
|
---|
| 113 | if nargout > 1,
|
---|
| 114 | dxdom = zeros(2*n,3);
|
---|
| 115 | dxdom(1:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdom(1:3:end,:) + bb .* dYdom(3:3:end,:);
|
---|
| 116 | dxdom(2:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdom(2:3:end,:) + cc .* dYdom(3:3:end,:);
|
---|
| 117 |
|
---|
| 118 | dxdT = zeros(2*n,3);
|
---|
| 119 | dxdT(1:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdT(1:3:end,:) + bb .* dYdT(3:3:end,:);
|
---|
| 120 | dxdT(2:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdT(2:3:end,:) + cc .* dYdT(3:3:end,:);
|
---|
| 121 | end;
|
---|
| 122 |
|
---|
| 123 |
|
---|
| 124 | % Add distortion:
|
---|
| 125 |
|
---|
| 126 | r2 = x(1,:).^2 + x(2,:).^2;
|
---|
| 127 |
|
---|
| 128 | if nargout > 1,
|
---|
| 129 | dr2dom = 2*((x(1,:)')*ones(1,3)) .* dxdom(1:2:end,:) + 2*((x(2,:)')*ones(1,3)) .* dxdom(2:2:end,:);
|
---|
| 130 | dr2dT = 2*((x(1,:)')*ones(1,3)) .* dxdT(1:2:end,:) + 2*((x(2,:)')*ones(1,3)) .* dxdT(2:2:end,:);
|
---|
| 131 | end;
|
---|
| 132 |
|
---|
| 133 |
|
---|
| 134 | r4 = r2.^2;
|
---|
| 135 |
|
---|
| 136 | if nargout > 1,
|
---|
| 137 | dr4dom = 2*((r2')*ones(1,3)) .* dr2dom;
|
---|
| 138 | dr4dT = 2*((r2')*ones(1,3)) .* dr2dT;
|
---|
| 139 | end
|
---|
| 140 |
|
---|
| 141 | r6 = r2.^3;
|
---|
| 142 |
|
---|
| 143 | if nargout > 1,
|
---|
| 144 | dr6dom = 3*((r2'.^2)*ones(1,3)) .* dr2dom;
|
---|
| 145 | dr6dT = 3*((r2'.^2)*ones(1,3)) .* dr2dT;
|
---|
| 146 | end;
|
---|
| 147 |
|
---|
| 148 | % Radial distortion:
|
---|
| 149 |
|
---|
| 150 | cdist = 1 + k(1) * r2 + k(2) * r4 + k(5) * r6;
|
---|
| 151 |
|
---|
| 152 | if nargout > 1,
|
---|
| 153 | dcdistdom = k(1) * dr2dom + k(2) * dr4dom + k(5) * dr6dom;
|
---|
| 154 | dcdistdT = k(1) * dr2dT + k(2) * dr4dT + k(5) * dr6dT;
|
---|
| 155 | dcdistdk = [ r2' r4' zeros(n,2) r6'];
|
---|
| 156 | end;
|
---|
| 157 |
|
---|
| 158 | xd1 = x .* (ones(2,1)*cdist);
|
---|
| 159 |
|
---|
| 160 | if nargout > 1,
|
---|
| 161 | dxd1dom = zeros(2*n,3);
|
---|
| 162 | dxd1dom(1:2:end,:) = (x(1,:)'*ones(1,3)) .* dcdistdom;
|
---|
| 163 | dxd1dom(2:2:end,:) = (x(2,:)'*ones(1,3)) .* dcdistdom;
|
---|
| 164 | coeff = (reshape([cdist;cdist],2*n,1)*ones(1,3));
|
---|
| 165 | dxd1dom = dxd1dom + coeff.* dxdom;
|
---|
| 166 |
|
---|
| 167 | dxd1dT = zeros(2*n,3);
|
---|
| 168 | dxd1dT(1:2:end,:) = (x(1,:)'*ones(1,3)) .* dcdistdT;
|
---|
| 169 | dxd1dT(2:2:end,:) = (x(2,:)'*ones(1,3)) .* dcdistdT;
|
---|
| 170 | dxd1dT = dxd1dT + coeff.* dxdT;
|
---|
| 171 |
|
---|
| 172 | dxd1dk = zeros(2*n,5);
|
---|
| 173 | dxd1dk(1:2:end,:) = (x(1,:)'*ones(1,5)) .* dcdistdk;
|
---|
| 174 | dxd1dk(2:2:end,:) = (x(2,:)'*ones(1,5)) .* dcdistdk;
|
---|
| 175 | end;
|
---|
| 176 |
|
---|
| 177 |
|
---|
| 178 | % tangential distortion:
|
---|
| 179 |
|
---|
| 180 | a1 = 2.*x(1,:).*x(2,:);
|
---|
| 181 | a2 = r2 + 2*x(1,:).^2;
|
---|
| 182 | a3 = r2 + 2*x(2,:).^2;
|
---|
| 183 |
|
---|
| 184 | delta_x = [k(3)*a1 + k(4)*a2 ;
|
---|
| 185 | k(3) * a3 + k(4)*a1];
|
---|
| 186 |
|
---|
| 187 |
|
---|
| 188 | %ddelta_xdx = zeros(2*n,2*n);
|
---|
| 189 | aa = (2*k(3)*x(2,:)+6*k(4)*x(1,:))'*ones(1,3);
|
---|
| 190 | bb = (2*k(3)*x(1,:)+2*k(4)*x(2,:))'*ones(1,3);
|
---|
| 191 | cc = (6*k(3)*x(2,:)+2*k(4)*x(1,:))'*ones(1,3);
|
---|
| 192 |
|
---|
| 193 | if nargout > 1,
|
---|
| 194 | ddelta_xdom = zeros(2*n,3);
|
---|
| 195 | ddelta_xdom(1:2:end,:) = aa .* dxdom(1:2:end,:) + bb .* dxdom(2:2:end,:);
|
---|
| 196 | ddelta_xdom(2:2:end,:) = bb .* dxdom(1:2:end,:) + cc .* dxdom(2:2:end,:);
|
---|
| 197 |
|
---|
| 198 | ddelta_xdT = zeros(2*n,3);
|
---|
| 199 | ddelta_xdT(1:2:end,:) = aa .* dxdT(1:2:end,:) + bb .* dxdT(2:2:end,:);
|
---|
| 200 | ddelta_xdT(2:2:end,:) = bb .* dxdT(1:2:end,:) + cc .* dxdT(2:2:end,:);
|
---|
| 201 |
|
---|
| 202 | ddelta_xdk = zeros(2*n,5);
|
---|
| 203 | ddelta_xdk(1:2:end,3) = a1';
|
---|
| 204 | ddelta_xdk(1:2:end,4) = a2';
|
---|
| 205 | ddelta_xdk(2:2:end,3) = a3';
|
---|
| 206 | ddelta_xdk(2:2:end,4) = a1';
|
---|
| 207 | end;
|
---|
| 208 |
|
---|
| 209 |
|
---|
| 210 | xd2 = xd1 + delta_x;
|
---|
| 211 |
|
---|
| 212 | if nargout > 1,
|
---|
| 213 | dxd2dom = dxd1dom + ddelta_xdom ;
|
---|
| 214 | dxd2dT = dxd1dT + ddelta_xdT;
|
---|
| 215 | dxd2dk = dxd1dk + ddelta_xdk ;
|
---|
| 216 | end;
|
---|
| 217 |
|
---|
| 218 |
|
---|
| 219 | % Add Skew:
|
---|
| 220 |
|
---|
| 221 | xd3 = [xd2(1,:) + alpha*xd2(2,:);xd2(2,:)];
|
---|
| 222 |
|
---|
| 223 | % Compute: dxd3dom, dxd3dT, dxd3dk, dxd3dalpha
|
---|
| 224 | if nargout > 1,
|
---|
| 225 | dxd3dom = zeros(2*n,3);
|
---|
| 226 | dxd3dom(1:2:2*n,:) = dxd2dom(1:2:2*n,:) + alpha*dxd2dom(2:2:2*n,:);
|
---|
| 227 | dxd3dom(2:2:2*n,:) = dxd2dom(2:2:2*n,:);
|
---|
| 228 | dxd3dT = zeros(2*n,3);
|
---|
| 229 | dxd3dT(1:2:2*n,:) = dxd2dT(1:2:2*n,:) + alpha*dxd2dT(2:2:2*n,:);
|
---|
| 230 | dxd3dT(2:2:2*n,:) = dxd2dT(2:2:2*n,:);
|
---|
| 231 | dxd3dk = zeros(2*n,5);
|
---|
| 232 | dxd3dk(1:2:2*n,:) = dxd2dk(1:2:2*n,:) + alpha*dxd2dk(2:2:2*n,:);
|
---|
| 233 | dxd3dk(2:2:2*n,:) = dxd2dk(2:2:2*n,:);
|
---|
| 234 | dxd3dalpha = zeros(2*n,1);
|
---|
| 235 | dxd3dalpha(1:2:2*n,:) = xd2(2,:)';
|
---|
| 236 | end;
|
---|
| 237 |
|
---|
| 238 |
|
---|
| 239 |
|
---|
| 240 | % Pixel coordinates:
|
---|
| 241 | if length(f)>1,
|
---|
| 242 | xp = xd3 .* (f * ones(1,n)) + c*ones(1,n);
|
---|
| 243 | if nargout > 1,
|
---|
| 244 | coeff = reshape(f*ones(1,n),2*n,1);
|
---|
| 245 | dxpdom = (coeff*ones(1,3)) .* dxd3dom;
|
---|
| 246 | dxpdT = (coeff*ones(1,3)) .* dxd3dT;
|
---|
| 247 | dxpdk = (coeff*ones(1,5)) .* dxd3dk;
|
---|
| 248 | dxpdalpha = (coeff) .* dxd3dalpha;
|
---|
| 249 | dxpdf = zeros(2*n,2);
|
---|
| 250 | dxpdf(1:2:end,1) = xd3(1,:)';
|
---|
| 251 | dxpdf(2:2:end,2) = xd3(2,:)';
|
---|
| 252 | end;
|
---|
| 253 | else
|
---|
| 254 | xp = f * xd3 + c*ones(1,n);
|
---|
| 255 | if nargout > 1,
|
---|
| 256 | dxpdom = f * dxd3dom;
|
---|
| 257 | dxpdT = f * dxd3dT;
|
---|
| 258 | dxpdk = f * dxd3dk;
|
---|
| 259 | dxpdalpha = f .* dxd3dalpha;
|
---|
| 260 | dxpdf = xd3(:);
|
---|
| 261 | end;
|
---|
| 262 | end;
|
---|
| 263 |
|
---|
| 264 | if nargout > 1,
|
---|
| 265 | dxpdc = zeros(2*n,2);
|
---|
| 266 | dxpdc(1:2:end,1) = ones(n,1);
|
---|
| 267 | dxpdc(2:2:end,2) = ones(n,1);
|
---|
| 268 | end;
|
---|
| 269 |
|
---|
| 270 |
|
---|
| 271 | return;
|
---|
| 272 |
|
---|
| 273 | % Test of the Jacobians:
|
---|
| 274 |
|
---|
| 275 | n = 10;
|
---|
| 276 |
|
---|
| 277 | X = 10*randn(3,n);
|
---|
| 278 | om = randn(3,1);
|
---|
| 279 | T = [10*randn(2,1);40];
|
---|
| 280 | f = 1000*rand(2,1);
|
---|
| 281 | c = 1000*randn(2,1);
|
---|
| 282 | k = 0.5*randn(5,1);
|
---|
| 283 | alpha = 0.01*randn(1,1);
|
---|
| 284 |
|
---|
| 285 | [x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points2(X,om,T,f,c,k,alpha);
|
---|
| 286 |
|
---|
| 287 |
|
---|
| 288 | % Test on om: OK
|
---|
| 289 |
|
---|
| 290 | dom = 0.000000001 * norm(om)*randn(3,1);
|
---|
| 291 | om2 = om + dom;
|
---|
| 292 |
|
---|
| 293 | [x2] = project_points2(X,om2,T,f,c,k,alpha);
|
---|
| 294 |
|
---|
| 295 | x_pred = x + reshape(dxdom * dom,2,n);
|
---|
| 296 |
|
---|
| 297 |
|
---|
| 298 | norm(x2-x)/norm(x2 - x_pred)
|
---|
| 299 |
|
---|
| 300 |
|
---|
| 301 | % Test on T: OK!!
|
---|
| 302 |
|
---|
| 303 | dT = 0.0001 * norm(T)*randn(3,1);
|
---|
| 304 | T2 = T + dT;
|
---|
| 305 |
|
---|
| 306 | [x2] = project_points2(X,om,T2,f,c,k,alpha);
|
---|
| 307 |
|
---|
| 308 | x_pred = x + reshape(dxdT * dT,2,n);
|
---|
| 309 |
|
---|
| 310 |
|
---|
| 311 | norm(x2-x)/norm(x2 - x_pred)
|
---|
| 312 |
|
---|
| 313 |
|
---|
| 314 |
|
---|
| 315 | % Test on f: OK!!
|
---|
| 316 |
|
---|
| 317 | df = 0.001 * norm(f)*randn(2,1);
|
---|
| 318 | f2 = f + df;
|
---|
| 319 |
|
---|
| 320 | [x2] = project_points2(X,om,T,f2,c,k,alpha);
|
---|
| 321 |
|
---|
| 322 | x_pred = x + reshape(dxdf * df,2,n);
|
---|
| 323 |
|
---|
| 324 |
|
---|
| 325 | norm(x2-x)/norm(x2 - x_pred)
|
---|
| 326 |
|
---|
| 327 |
|
---|
| 328 | % Test on c: OK!!
|
---|
| 329 |
|
---|
| 330 | dc = 0.01 * norm(c)*randn(2,1);
|
---|
| 331 | c2 = c + dc;
|
---|
| 332 |
|
---|
| 333 | [x2] = project_points2(X,om,T,f,c2,k,alpha);
|
---|
| 334 |
|
---|
| 335 | x_pred = x + reshape(dxdc * dc,2,n);
|
---|
| 336 |
|
---|
| 337 | norm(x2-x)/norm(x2 - x_pred)
|
---|
| 338 |
|
---|
| 339 | % Test on k: OK!!
|
---|
| 340 |
|
---|
| 341 | dk = 0.001 * norm(k)*randn(5,1);
|
---|
| 342 | k2 = k + dk;
|
---|
| 343 |
|
---|
| 344 | [x2] = project_points2(X,om,T,f,c,k2,alpha);
|
---|
| 345 |
|
---|
| 346 | x_pred = x + reshape(dxdk * dk,2,n);
|
---|
| 347 |
|
---|
| 348 | norm(x2-x)/norm(x2 - x_pred)
|
---|
| 349 |
|
---|
| 350 |
|
---|
| 351 | % Test on alpha: OK!!
|
---|
| 352 |
|
---|
| 353 | dalpha = 0.001 * norm(k)*randn(1,1);
|
---|
| 354 | alpha2 = alpha + dalpha;
|
---|
| 355 |
|
---|
| 356 | [x2] = project_points2(X,om,T,f,c,k,alpha2);
|
---|
| 357 |
|
---|
| 358 | x_pred = x + reshape(dxdalpha * dalpha,2,n);
|
---|
| 359 |
|
---|
| 360 | norm(x2-x)/norm(x2 - x_pred)
|
---|