1 | %=======================================================================
|
---|
2 | % Copyright 2008-2014, LEGI UMR 5519 / CNRS UJF G-INP, Grenoble, France
|
---|
3 | % http://www.legi.grenoble-inp.fr
|
---|
4 | % Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr
|
---|
5 | %
|
---|
6 | % This file is part of the toolbox UVMAT.
|
---|
7 | %
|
---|
8 | % UVMAT is free software; you can redistribute it and/or modify
|
---|
9 | % it under the terms of the GNU General Public License as published
|
---|
10 | % by the Free Software Foundation; either version 2 of the license,
|
---|
11 | % or (at your option) any later version.
|
---|
12 | %
|
---|
13 | % UVMAT is distributed in the hope that it will be useful,
|
---|
14 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | % GNU General Public License (see LICENSE.txt) for more details.
|
---|
17 | %=======================================================================
|
---|
18 |
|
---|
19 | function [xp,dxpdom,dxpdT,dxpdf,dxpdc,dxpdk,dxpdalpha] = project_points2(X,om,T,f,c,k,alpha)
|
---|
20 |
|
---|
21 | %project_points2.m
|
---|
22 | %
|
---|
23 | %[xp,dxpdom,dxpdT,dxpdf,dxpdc,dxpdk] = project_points2(X,om,T,f,c,k,alpha)
|
---|
24 | %
|
---|
25 | %Projects a 3D structure onto the image plane.
|
---|
26 | %
|
---|
27 | %INPUT: X: 3D structure in the world coordinate frame (3xN matrix for N points)
|
---|
28 | % (om,T): Rigid motion parameters between world coordinate frame and camera reference frame
|
---|
29 | % om: rotation vector (3x1 vector); T: translation vector (3x1 vector)
|
---|
30 | % f: camera focal length in units of horizontal and vertical pixel units (2x1 vector)
|
---|
31 | % c: principal point location in pixel units (2x1 vector)
|
---|
32 | % k: Distortion coefficients (radial and tangential) (4x1 vector)
|
---|
33 | % alpha: Skew coefficient between x and y pixel (alpha = 0 <=> square pixels)
|
---|
34 | %
|
---|
35 | %OUTPUT: xp: Projected pixel coordinates (2xN matrix for N points)
|
---|
36 | % dxpdom: Derivative of xp with respect to om ((2N)x3 matrix)
|
---|
37 | % dxpdT: Derivative of xp with respect to T ((2N)x3 matrix)
|
---|
38 | % dxpdf: Derivative of xp with respect to f ((2N)x2 matrix if f is 2x1, or (2N)x1 matrix is f is a scalar)
|
---|
39 | % dxpdc: Derivative of xp with respect to c ((2N)x2 matrix)
|
---|
40 | % dxpdk: Derivative of xp with respect to k ((2N)x4 matrix)
|
---|
41 | %
|
---|
42 | %Definitions:
|
---|
43 | %Let P be a point in 3D of coordinates X in the world reference frame (stored in the matrix X)
|
---|
44 | %The coordinate vector of P in the camera reference frame is: Xc = R*X + T
|
---|
45 | %where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om);
|
---|
46 | %call x, y and z the 3 coordinates of Xc: x = Xc(1); y = Xc(2); z = Xc(3);
|
---|
47 | %The pinehole projection coordinates of P is [a;b] where a=x/z and b=y/z.
|
---|
48 | %call r^2 = a^2 + b^2.
|
---|
49 | %The distorted point coordinates are: xd = [xx;yy] where:
|
---|
50 | %
|
---|
51 | %xx = a * (1 + kc(1)*r^2 + kc(2)*r^4 + kc(5)*r^6) + 2*kc(3)*a*b + kc(4)*(r^2 + 2*a^2);
|
---|
52 | %yy = b * (1 + kc(1)*r^2 + kc(2)*r^4 + kc(5)*r^6) + kc(3)*(r^2 + 2*b^2) + 2*kc(4)*a*b;
|
---|
53 | %
|
---|
54 | %The left terms correspond to radial distortion (6th degree), the right terms correspond to tangential distortion
|
---|
55 | %
|
---|
56 | %Finally, convertion into pixel coordinates: The final pixel coordinates vector xp=[xxp;yyp] where:
|
---|
57 | %
|
---|
58 | %xxp = f(1)*(xx + alpha*yy) + c(1)
|
---|
59 | %yyp = f(2)*yy + c(2)
|
---|
60 | %
|
---|
61 | %
|
---|
62 | %NOTE: About 90 percent of the code takes care fo computing the Jacobian matrices
|
---|
63 | %
|
---|
64 | %
|
---|
65 | %Important function called within that program:
|
---|
66 | %
|
---|
67 | %rodrigues.m: Computes the rotation matrix corresponding to a rotation vector
|
---|
68 | %
|
---|
69 | %rigid_motion.m: Computes the rigid motion transformation of a given structure
|
---|
70 |
|
---|
71 |
|
---|
72 | if nargin < 7,
|
---|
73 | alpha = 0;
|
---|
74 | if nargin < 6,
|
---|
75 | k = zeros(5,1);
|
---|
76 | if nargin < 5,
|
---|
77 | c = zeros(2,1);
|
---|
78 | if nargin < 4,
|
---|
79 | f = ones(2,1);
|
---|
80 | if nargin < 3,
|
---|
81 | T = zeros(3,1);
|
---|
82 | if nargin < 2,
|
---|
83 | om = zeros(3,1);
|
---|
84 | if nargin < 1,
|
---|
85 | error('Need at least a 3D structure to project (in project_points.m)');
|
---|
86 | return;
|
---|
87 | end;
|
---|
88 | end;
|
---|
89 | end;
|
---|
90 | end;
|
---|
91 | end;
|
---|
92 | end;
|
---|
93 | end;
|
---|
94 |
|
---|
95 |
|
---|
96 | [m,n] = size(X);
|
---|
97 |
|
---|
98 | if nargout > 1,
|
---|
99 | [Y,dYdom,dYdT] = rigid_motion(X,om,T);
|
---|
100 | else
|
---|
101 | Y = rigid_motion(X,om,T);
|
---|
102 | end;
|
---|
103 |
|
---|
104 |
|
---|
105 | inv_Z = 1./Y(3,:);
|
---|
106 |
|
---|
107 | x = (Y(1:2,:) .* (ones(2,1) * inv_Z)) ;
|
---|
108 |
|
---|
109 |
|
---|
110 | bb = (-x(1,:) .* inv_Z)'*ones(1,3);
|
---|
111 | cc = (-x(2,:) .* inv_Z)'*ones(1,3);
|
---|
112 |
|
---|
113 | if nargout > 1,
|
---|
114 | dxdom = zeros(2*n,3);
|
---|
115 | dxdom(1:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdom(1:3:end,:) + bb .* dYdom(3:3:end,:);
|
---|
116 | dxdom(2:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdom(2:3:end,:) + cc .* dYdom(3:3:end,:);
|
---|
117 |
|
---|
118 | dxdT = zeros(2*n,3);
|
---|
119 | dxdT(1:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdT(1:3:end,:) + bb .* dYdT(3:3:end,:);
|
---|
120 | dxdT(2:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdT(2:3:end,:) + cc .* dYdT(3:3:end,:);
|
---|
121 | end;
|
---|
122 |
|
---|
123 |
|
---|
124 | % Add distortion:
|
---|
125 |
|
---|
126 | r2 = x(1,:).^2 + x(2,:).^2;
|
---|
127 |
|
---|
128 | if nargout > 1,
|
---|
129 | dr2dom = 2*((x(1,:)')*ones(1,3)) .* dxdom(1:2:end,:) + 2*((x(2,:)')*ones(1,3)) .* dxdom(2:2:end,:);
|
---|
130 | dr2dT = 2*((x(1,:)')*ones(1,3)) .* dxdT(1:2:end,:) + 2*((x(2,:)')*ones(1,3)) .* dxdT(2:2:end,:);
|
---|
131 | end;
|
---|
132 |
|
---|
133 |
|
---|
134 | r4 = r2.^2;
|
---|
135 |
|
---|
136 | if nargout > 1,
|
---|
137 | dr4dom = 2*((r2')*ones(1,3)) .* dr2dom;
|
---|
138 | dr4dT = 2*((r2')*ones(1,3)) .* dr2dT;
|
---|
139 | end
|
---|
140 |
|
---|
141 | r6 = r2.^3;
|
---|
142 |
|
---|
143 | if nargout > 1,
|
---|
144 | dr6dom = 3*((r2'.^2)*ones(1,3)) .* dr2dom;
|
---|
145 | dr6dT = 3*((r2'.^2)*ones(1,3)) .* dr2dT;
|
---|
146 | end;
|
---|
147 |
|
---|
148 | % Radial distortion:
|
---|
149 |
|
---|
150 | cdist = 1 + k(1) * r2 + k(2) * r4 + k(5) * r6;
|
---|
151 |
|
---|
152 | if nargout > 1,
|
---|
153 | dcdistdom = k(1) * dr2dom + k(2) * dr4dom + k(5) * dr6dom;
|
---|
154 | dcdistdT = k(1) * dr2dT + k(2) * dr4dT + k(5) * dr6dT;
|
---|
155 | dcdistdk = [ r2' r4' zeros(n,2) r6'];
|
---|
156 | end;
|
---|
157 |
|
---|
158 | xd1 = x .* (ones(2,1)*cdist);
|
---|
159 |
|
---|
160 | if nargout > 1,
|
---|
161 | dxd1dom = zeros(2*n,3);
|
---|
162 | dxd1dom(1:2:end,:) = (x(1,:)'*ones(1,3)) .* dcdistdom;
|
---|
163 | dxd1dom(2:2:end,:) = (x(2,:)'*ones(1,3)) .* dcdistdom;
|
---|
164 | coeff = (reshape([cdist;cdist],2*n,1)*ones(1,3));
|
---|
165 | dxd1dom = dxd1dom + coeff.* dxdom;
|
---|
166 |
|
---|
167 | dxd1dT = zeros(2*n,3);
|
---|
168 | dxd1dT(1:2:end,:) = (x(1,:)'*ones(1,3)) .* dcdistdT;
|
---|
169 | dxd1dT(2:2:end,:) = (x(2,:)'*ones(1,3)) .* dcdistdT;
|
---|
170 | dxd1dT = dxd1dT + coeff.* dxdT;
|
---|
171 |
|
---|
172 | dxd1dk = zeros(2*n,5);
|
---|
173 | dxd1dk(1:2:end,:) = (x(1,:)'*ones(1,5)) .* dcdistdk;
|
---|
174 | dxd1dk(2:2:end,:) = (x(2,:)'*ones(1,5)) .* dcdistdk;
|
---|
175 | end;
|
---|
176 |
|
---|
177 |
|
---|
178 | % tangential distortion:
|
---|
179 |
|
---|
180 | a1 = 2.*x(1,:).*x(2,:);
|
---|
181 | a2 = r2 + 2*x(1,:).^2;
|
---|
182 | a3 = r2 + 2*x(2,:).^2;
|
---|
183 |
|
---|
184 | delta_x = [k(3)*a1 + k(4)*a2 ;
|
---|
185 | k(3) * a3 + k(4)*a1];
|
---|
186 |
|
---|
187 |
|
---|
188 | %ddelta_xdx = zeros(2*n,2*n);
|
---|
189 | aa = (2*k(3)*x(2,:)+6*k(4)*x(1,:))'*ones(1,3);
|
---|
190 | bb = (2*k(3)*x(1,:)+2*k(4)*x(2,:))'*ones(1,3);
|
---|
191 | cc = (6*k(3)*x(2,:)+2*k(4)*x(1,:))'*ones(1,3);
|
---|
192 |
|
---|
193 | if nargout > 1,
|
---|
194 | ddelta_xdom = zeros(2*n,3);
|
---|
195 | ddelta_xdom(1:2:end,:) = aa .* dxdom(1:2:end,:) + bb .* dxdom(2:2:end,:);
|
---|
196 | ddelta_xdom(2:2:end,:) = bb .* dxdom(1:2:end,:) + cc .* dxdom(2:2:end,:);
|
---|
197 |
|
---|
198 | ddelta_xdT = zeros(2*n,3);
|
---|
199 | ddelta_xdT(1:2:end,:) = aa .* dxdT(1:2:end,:) + bb .* dxdT(2:2:end,:);
|
---|
200 | ddelta_xdT(2:2:end,:) = bb .* dxdT(1:2:end,:) + cc .* dxdT(2:2:end,:);
|
---|
201 |
|
---|
202 | ddelta_xdk = zeros(2*n,5);
|
---|
203 | ddelta_xdk(1:2:end,3) = a1';
|
---|
204 | ddelta_xdk(1:2:end,4) = a2';
|
---|
205 | ddelta_xdk(2:2:end,3) = a3';
|
---|
206 | ddelta_xdk(2:2:end,4) = a1';
|
---|
207 | end;
|
---|
208 |
|
---|
209 |
|
---|
210 | xd2 = xd1 + delta_x;
|
---|
211 |
|
---|
212 | if nargout > 1,
|
---|
213 | dxd2dom = dxd1dom + ddelta_xdom ;
|
---|
214 | dxd2dT = dxd1dT + ddelta_xdT;
|
---|
215 | dxd2dk = dxd1dk + ddelta_xdk ;
|
---|
216 | end;
|
---|
217 |
|
---|
218 |
|
---|
219 | % Add Skew:
|
---|
220 |
|
---|
221 | xd3 = [xd2(1,:) + alpha*xd2(2,:);xd2(2,:)];
|
---|
222 |
|
---|
223 | % Compute: dxd3dom, dxd3dT, dxd3dk, dxd3dalpha
|
---|
224 | if nargout > 1,
|
---|
225 | dxd3dom = zeros(2*n,3);
|
---|
226 | dxd3dom(1:2:2*n,:) = dxd2dom(1:2:2*n,:) + alpha*dxd2dom(2:2:2*n,:);
|
---|
227 | dxd3dom(2:2:2*n,:) = dxd2dom(2:2:2*n,:);
|
---|
228 | dxd3dT = zeros(2*n,3);
|
---|
229 | dxd3dT(1:2:2*n,:) = dxd2dT(1:2:2*n,:) + alpha*dxd2dT(2:2:2*n,:);
|
---|
230 | dxd3dT(2:2:2*n,:) = dxd2dT(2:2:2*n,:);
|
---|
231 | dxd3dk = zeros(2*n,5);
|
---|
232 | dxd3dk(1:2:2*n,:) = dxd2dk(1:2:2*n,:) + alpha*dxd2dk(2:2:2*n,:);
|
---|
233 | dxd3dk(2:2:2*n,:) = dxd2dk(2:2:2*n,:);
|
---|
234 | dxd3dalpha = zeros(2*n,1);
|
---|
235 | dxd3dalpha(1:2:2*n,:) = xd2(2,:)';
|
---|
236 | end;
|
---|
237 |
|
---|
238 |
|
---|
239 |
|
---|
240 | % Pixel coordinates:
|
---|
241 | if length(f)>1,
|
---|
242 | xp = xd3 .* (f * ones(1,n)) + c*ones(1,n);
|
---|
243 | if nargout > 1,
|
---|
244 | coeff = reshape(f*ones(1,n),2*n,1);
|
---|
245 | dxpdom = (coeff*ones(1,3)) .* dxd3dom;
|
---|
246 | dxpdT = (coeff*ones(1,3)) .* dxd3dT;
|
---|
247 | dxpdk = (coeff*ones(1,5)) .* dxd3dk;
|
---|
248 | dxpdalpha = (coeff) .* dxd3dalpha;
|
---|
249 | dxpdf = zeros(2*n,2);
|
---|
250 | dxpdf(1:2:end,1) = xd3(1,:)';
|
---|
251 | dxpdf(2:2:end,2) = xd3(2,:)';
|
---|
252 | end;
|
---|
253 | else
|
---|
254 | xp = f * xd3 + c*ones(1,n);
|
---|
255 | if nargout > 1,
|
---|
256 | dxpdom = f * dxd3dom;
|
---|
257 | dxpdT = f * dxd3dT;
|
---|
258 | dxpdk = f * dxd3dk;
|
---|
259 | dxpdalpha = f .* dxd3dalpha;
|
---|
260 | dxpdf = xd3(:);
|
---|
261 | end;
|
---|
262 | end;
|
---|
263 |
|
---|
264 | if nargout > 1,
|
---|
265 | dxpdc = zeros(2*n,2);
|
---|
266 | dxpdc(1:2:end,1) = ones(n,1);
|
---|
267 | dxpdc(2:2:end,2) = ones(n,1);
|
---|
268 | end;
|
---|
269 |
|
---|
270 |
|
---|
271 | return;
|
---|
272 |
|
---|
273 | % Test of the Jacobians:
|
---|
274 |
|
---|
275 | n = 10;
|
---|
276 |
|
---|
277 | X = 10*randn(3,n);
|
---|
278 | om = randn(3,1);
|
---|
279 | T = [10*randn(2,1);40];
|
---|
280 | f = 1000*rand(2,1);
|
---|
281 | c = 1000*randn(2,1);
|
---|
282 | k = 0.5*randn(5,1);
|
---|
283 | alpha = 0.01*randn(1,1);
|
---|
284 |
|
---|
285 | [x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points2(X,om,T,f,c,k,alpha);
|
---|
286 |
|
---|
287 |
|
---|
288 | % Test on om: OK
|
---|
289 |
|
---|
290 | dom = 0.000000001 * norm(om)*randn(3,1);
|
---|
291 | om2 = om + dom;
|
---|
292 |
|
---|
293 | [x2] = project_points2(X,om2,T,f,c,k,alpha);
|
---|
294 |
|
---|
295 | x_pred = x + reshape(dxdom * dom,2,n);
|
---|
296 |
|
---|
297 |
|
---|
298 | norm(x2-x)/norm(x2 - x_pred)
|
---|
299 |
|
---|
300 |
|
---|
301 | % Test on T: OK!!
|
---|
302 |
|
---|
303 | dT = 0.0001 * norm(T)*randn(3,1);
|
---|
304 | T2 = T + dT;
|
---|
305 |
|
---|
306 | [x2] = project_points2(X,om,T2,f,c,k,alpha);
|
---|
307 |
|
---|
308 | x_pred = x + reshape(dxdT * dT,2,n);
|
---|
309 |
|
---|
310 |
|
---|
311 | norm(x2-x)/norm(x2 - x_pred)
|
---|
312 |
|
---|
313 |
|
---|
314 |
|
---|
315 | % Test on f: OK!!
|
---|
316 |
|
---|
317 | df = 0.001 * norm(f)*randn(2,1);
|
---|
318 | f2 = f + df;
|
---|
319 |
|
---|
320 | [x2] = project_points2(X,om,T,f2,c,k,alpha);
|
---|
321 |
|
---|
322 | x_pred = x + reshape(dxdf * df,2,n);
|
---|
323 |
|
---|
324 |
|
---|
325 | norm(x2-x)/norm(x2 - x_pred)
|
---|
326 |
|
---|
327 |
|
---|
328 | % Test on c: OK!!
|
---|
329 |
|
---|
330 | dc = 0.01 * norm(c)*randn(2,1);
|
---|
331 | c2 = c + dc;
|
---|
332 |
|
---|
333 | [x2] = project_points2(X,om,T,f,c2,k,alpha);
|
---|
334 |
|
---|
335 | x_pred = x + reshape(dxdc * dc,2,n);
|
---|
336 |
|
---|
337 | norm(x2-x)/norm(x2 - x_pred)
|
---|
338 |
|
---|
339 | % Test on k: OK!!
|
---|
340 |
|
---|
341 | dk = 0.001 * norm(k)*randn(5,1);
|
---|
342 | k2 = k + dk;
|
---|
343 |
|
---|
344 | [x2] = project_points2(X,om,T,f,c,k2,alpha);
|
---|
345 |
|
---|
346 | x_pred = x + reshape(dxdk * dk,2,n);
|
---|
347 |
|
---|
348 | norm(x2-x)/norm(x2 - x_pred)
|
---|
349 |
|
---|
350 |
|
---|
351 | % Test on alpha: OK!!
|
---|
352 |
|
---|
353 | dalpha = 0.001 * norm(k)*randn(1,1);
|
---|
354 | alpha2 = alpha + dalpha;
|
---|
355 |
|
---|
356 | [x2] = project_points2(X,om,T,f,c,k,alpha2);
|
---|
357 |
|
---|
358 | x_pred = x + reshape(dxdalpha * dalpha,2,n);
|
---|
359 |
|
---|
360 | norm(x2-x)/norm(x2 - x_pred)
|
---|