[926] | 1 | function [Y,dYdom,dYdT] = rigid_motion(X,om,T); |
---|
| 2 | |
---|
| 3 | %rigid_motion.m |
---|
| 4 | % |
---|
| 5 | %[Y,dYdom,dYdT] = rigid_motion(X,om,T) |
---|
| 6 | % |
---|
| 7 | %Computes the rigid motion transformation Y = R*X+T, where R = rodrigues(om). |
---|
| 8 | % |
---|
| 9 | %INPUT: X: 3D structure in the world coordinate frame (3xN matrix for N points) |
---|
| 10 | % (om,T): Rigid motion parameters between world coordinate frame and camera reference frame |
---|
| 11 | % om: rotation vector (3x1 vector); T: translation vector (3x1 vector) |
---|
| 12 | % |
---|
| 13 | %OUTPUT: Y: 3D coordinates of the structure points in the camera reference frame (3xN matrix for N points) |
---|
| 14 | % dYdom: Derivative of Y with respect to om ((3N)x3 matrix) |
---|
| 15 | % dYdT: Derivative of Y with respect to T ((3N)x3 matrix) |
---|
| 16 | % |
---|
| 17 | %Definitions: |
---|
| 18 | %Let P be a point in 3D of coordinates X in the world reference frame (stored in the matrix X) |
---|
| 19 | %The coordinate vector of P in the camera reference frame is: Y = R*X + T |
---|
| 20 | %where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); |
---|
| 21 | % |
---|
| 22 | %Important function called within that program: |
---|
| 23 | % |
---|
| 24 | %rodrigues.m: Computes the rotation matrix corresponding to a rotation vector |
---|
| 25 | |
---|
| 26 | |
---|
| 27 | |
---|
| 28 | if nargin < 3, |
---|
| 29 | T = zeros(3,1); |
---|
| 30 | if nargin < 2, |
---|
| 31 | om = zeros(3,1); |
---|
| 32 | if nargin < 1, |
---|
| 33 | error('Need at least a 3D structure as input (in rigid_motion.m)'); |
---|
| 34 | return; |
---|
| 35 | end; |
---|
| 36 | end; |
---|
| 37 | end; |
---|
| 38 | |
---|
| 39 | |
---|
| 40 | [R,dRdom] = rodrigues(om); |
---|
| 41 | |
---|
| 42 | [m,n] = size(X); |
---|
| 43 | |
---|
| 44 | Y = R*X + repmat(T,[1 n]); |
---|
| 45 | |
---|
| 46 | if nargout > 1, |
---|
| 47 | |
---|
| 48 | |
---|
| 49 | dYdR = zeros(3*n,9); |
---|
| 50 | dYdT = zeros(3*n,3); |
---|
| 51 | |
---|
| 52 | dYdR(1:3:end,1:3:end) = X'; |
---|
| 53 | dYdR(2:3:end,2:3:end) = X'; |
---|
| 54 | dYdR(3:3:end,3:3:end) = X'; |
---|
| 55 | |
---|
| 56 | dYdT(1:3:end,1) = ones(n,1); |
---|
| 57 | dYdT(2:3:end,2) = ones(n,1); |
---|
| 58 | dYdT(3:3:end,3) = ones(n,1); |
---|
| 59 | |
---|
| 60 | dYdom = dYdR * dRdom; |
---|
| 61 | |
---|
| 62 | end; |
---|
| 63 | |
---|
| 64 | |
---|
| 65 | |
---|
| 66 | |
---|