[725] | 1 | function [Y,dYdom,dYdT] = rigid_motion(X,om,T);
|
---|
| 2 |
|
---|
| 3 | %rigid_motion.m
|
---|
| 4 | %
|
---|
| 5 | %[Y,dYdom,dYdT] = rigid_motion(X,om,T)
|
---|
| 6 | %
|
---|
| 7 | %Computes the rigid motion transformation Y = R*X+T, where R = rodrigues(om).
|
---|
| 8 | %
|
---|
| 9 | %INPUT: X: 3D structure in the world coordinate frame (3xN matrix for N points)
|
---|
| 10 | % (om,T): Rigid motion parameters between world coordinate frame and camera reference frame
|
---|
| 11 | % om: rotation vector (3x1 vector); T: translation vector (3x1 vector)
|
---|
| 12 | %
|
---|
| 13 | %OUTPUT: Y: 3D coordinates of the structure points in the camera reference frame (3xN matrix for N points)
|
---|
| 14 | % dYdom: Derivative of Y with respect to om ((3N)x3 matrix)
|
---|
| 15 | % dYdT: Derivative of Y with respect to T ((3N)x3 matrix)
|
---|
| 16 | %
|
---|
| 17 | %Definitions:
|
---|
| 18 | %Let P be a point in 3D of coordinates X in the world reference frame (stored in the matrix X)
|
---|
| 19 | %The coordinate vector of P in the camera reference frame is: Y = R*X + T
|
---|
| 20 | %where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om);
|
---|
| 21 | %
|
---|
| 22 | %Important function called within that program:
|
---|
| 23 | %
|
---|
| 24 | %rodrigues.m: Computes the rotation matrix corresponding to a rotation vector
|
---|
| 25 |
|
---|
| 26 |
|
---|
| 27 |
|
---|
| 28 | if nargin < 3,
|
---|
| 29 | T = zeros(3,1);
|
---|
| 30 | if nargin < 2,
|
---|
| 31 | om = zeros(3,1);
|
---|
| 32 | if nargin < 1,
|
---|
| 33 | error('Need at least a 3D structure as input (in rigid_motion.m)');
|
---|
| 34 | return;
|
---|
| 35 | end;
|
---|
| 36 | end;
|
---|
| 37 | end;
|
---|
| 38 |
|
---|
| 39 |
|
---|
| 40 | [R,dRdom] = rodrigues(om);
|
---|
| 41 |
|
---|
| 42 | [m,n] = size(X);
|
---|
| 43 |
|
---|
| 44 | Y = R*X + repmat(T,[1 n]);
|
---|
| 45 |
|
---|
| 46 | if nargout > 1,
|
---|
| 47 |
|
---|
| 48 |
|
---|
| 49 | dYdR = zeros(3*n,9);
|
---|
| 50 | dYdT = zeros(3*n,3);
|
---|
| 51 |
|
---|
| 52 | dYdR(1:3:end,1:3:end) = X';
|
---|
| 53 | dYdR(2:3:end,2:3:end) = X';
|
---|
| 54 | dYdR(3:3:end,3:3:end) = X';
|
---|
| 55 |
|
---|
| 56 | dYdT(1:3:end,1) = ones(n,1);
|
---|
| 57 | dYdT(2:3:end,2) = ones(n,1);
|
---|
| 58 | dYdT(3:3:end,3) = ones(n,1);
|
---|
| 59 |
|
---|
| 60 | dYdom = dYdR * dRdom;
|
---|
| 61 |
|
---|
| 62 | end;
|
---|
| 63 |
|
---|
| 64 |
|
---|
| 65 |
|
---|
| 66 |
|
---|