1 | function [Y,dYdom,dYdT] = rigid_motion(X,om,T); |
---|
2 | |
---|
3 | %rigid_motion.m |
---|
4 | % |
---|
5 | %[Y,dYdom,dYdT] = rigid_motion(X,om,T) |
---|
6 | % |
---|
7 | %Computes the rigid motion transformation Y = R*X+T, where R = rodrigues(om). |
---|
8 | % |
---|
9 | %INPUT: X: 3D structure in the world coordinate frame (3xN matrix for N points) |
---|
10 | % (om,T): Rigid motion parameters between world coordinate frame and camera reference frame |
---|
11 | % om: rotation vector (3x1 vector); T: translation vector (3x1 vector) |
---|
12 | % |
---|
13 | %OUTPUT: Y: 3D coordinates of the structure points in the camera reference frame (3xN matrix for N points) |
---|
14 | % dYdom: Derivative of Y with respect to om ((3N)x3 matrix) |
---|
15 | % dYdT: Derivative of Y with respect to T ((3N)x3 matrix) |
---|
16 | % |
---|
17 | %Definitions: |
---|
18 | %Let P be a point in 3D of coordinates X in the world reference frame (stored in the matrix X) |
---|
19 | %The coordinate vector of P in the camera reference frame is: Y = R*X + T |
---|
20 | %where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); |
---|
21 | % |
---|
22 | %Important function called within that program: |
---|
23 | % |
---|
24 | %rodrigues.m: Computes the rotation matrix corresponding to a rotation vector |
---|
25 | |
---|
26 | |
---|
27 | |
---|
28 | if nargin < 3, |
---|
29 | T = zeros(3,1); |
---|
30 | if nargin < 2, |
---|
31 | om = zeros(3,1); |
---|
32 | if nargin < 1, |
---|
33 | error('Need at least a 3D structure as input (in rigid_motion.m)'); |
---|
34 | return; |
---|
35 | end; |
---|
36 | end; |
---|
37 | end; |
---|
38 | |
---|
39 | |
---|
40 | [R,dRdom] = rodrigues(om); |
---|
41 | |
---|
42 | [m,n] = size(X); |
---|
43 | |
---|
44 | Y = R*X + repmat(T,[1 n]); |
---|
45 | |
---|
46 | if nargout > 1, |
---|
47 | |
---|
48 | |
---|
49 | dYdR = zeros(3*n,9); |
---|
50 | dYdT = zeros(3*n,3); |
---|
51 | |
---|
52 | dYdR(1:3:end,1:3:end) = X'; |
---|
53 | dYdR(2:3:end,2:3:end) = X'; |
---|
54 | dYdR(3:3:end,3:3:end) = X'; |
---|
55 | |
---|
56 | dYdT(1:3:end,1) = ones(n,1); |
---|
57 | dYdT(2:3:end,2) = ones(n,1); |
---|
58 | dYdT(3:3:end,3) = ones(n,1); |
---|
59 | |
---|
60 | dYdom = dYdR * dRdom; |
---|
61 | |
---|
62 | end; |
---|
63 | |
---|
64 | |
---|
65 | |
---|
66 | |
---|