[926] | 1 | function [out,dout]=rodrigues(in) |
---|
| 2 | |
---|
| 3 | % RODRIGUES Transform rotation matrix into rotation vector and viceversa. |
---|
| 4 | % |
---|
| 5 | % Sintax: [OUT]=RODRIGUES(IN) |
---|
| 6 | % If IN is a 3x3 rotation matrix then OUT is the |
---|
| 7 | % corresponding 3x1 rotation vector |
---|
| 8 | % if IN is a rotation 3-vector then OUT is the |
---|
| 9 | % corresponding 3x3 rotation matrix |
---|
| 10 | % |
---|
| 11 | |
---|
| 12 | %% |
---|
| 13 | %% Copyright (c) March 1993 -- Pietro Perona |
---|
| 14 | %% California Institute of Technology |
---|
| 15 | %% |
---|
| 16 | |
---|
| 17 | %% ALL CHECKED BY JEAN-YVES BOUGUET, October 1995. |
---|
| 18 | %% FOR ALL JACOBIAN MATRICES !!! LOOK AT THE TEST AT THE END !! |
---|
| 19 | |
---|
| 20 | %% BUG when norm(om)=pi fixed -- April 6th, 1997; |
---|
| 21 | %% Jean-Yves Bouguet |
---|
| 22 | |
---|
| 23 | %% Add projection of the 3x3 matrix onto the set of special ortogonal matrices SO(3) by SVD -- February 7th, 2003; |
---|
| 24 | %% Jean-Yves Bouguet |
---|
| 25 | |
---|
| 26 | % BUG FOR THE CASE norm(om)=pi fixed by Mike Burl on Feb 27, 2007 |
---|
| 27 | |
---|
| 28 | |
---|
| 29 | [m,n] = size(in); |
---|
| 30 | %bigeps = 10e+4*eps; |
---|
| 31 | bigeps = 10e+20*eps; |
---|
| 32 | |
---|
| 33 | if ((m==1) & (n==3)) | ((m==3) & (n==1)) %% it is a rotation vector |
---|
| 34 | theta = norm(in); |
---|
| 35 | if theta < eps |
---|
| 36 | R = eye(3); |
---|
| 37 | |
---|
| 38 | %if nargout > 1, |
---|
| 39 | |
---|
| 40 | dRdin = [0 0 0; |
---|
| 41 | 0 0 1; |
---|
| 42 | 0 -1 0; |
---|
| 43 | 0 0 -1; |
---|
| 44 | 0 0 0; |
---|
| 45 | 1 0 0; |
---|
| 46 | 0 1 0; |
---|
| 47 | -1 0 0; |
---|
| 48 | 0 0 0]; |
---|
| 49 | |
---|
| 50 | %end; |
---|
| 51 | |
---|
| 52 | else |
---|
| 53 | if n==length(in) in=in'; end; %% make it a column vec. if necess. |
---|
| 54 | |
---|
| 55 | %m3 = [in,theta] |
---|
| 56 | |
---|
| 57 | dm3din = [eye(3);in'/theta]; |
---|
| 58 | |
---|
| 59 | omega = in/theta; |
---|
| 60 | |
---|
| 61 | %m2 = [omega;theta] |
---|
| 62 | |
---|
| 63 | dm2dm3 = [eye(3)/theta -in/theta^2; zeros(1,3) 1]; |
---|
| 64 | |
---|
| 65 | alpha = cos(theta); |
---|
| 66 | beta = sin(theta); |
---|
| 67 | gamma = 1-cos(theta); |
---|
| 68 | omegav=[[0 -omega(3) omega(2)];[omega(3) 0 -omega(1)];[-omega(2) omega(1) 0 ]]; |
---|
| 69 | A = omega*omega'; |
---|
| 70 | |
---|
| 71 | %m1 = [alpha;beta;gamma;omegav;A]; |
---|
| 72 | |
---|
| 73 | dm1dm2 = zeros(21,4); |
---|
| 74 | dm1dm2(1,4) = -sin(theta); |
---|
| 75 | dm1dm2(2,4) = cos(theta); |
---|
| 76 | dm1dm2(3,4) = sin(theta); |
---|
| 77 | dm1dm2(4:12,1:3) = [0 0 0 0 0 1 0 -1 0; |
---|
| 78 | 0 0 -1 0 0 0 1 0 0; |
---|
| 79 | 0 1 0 -1 0 0 0 0 0]'; |
---|
| 80 | |
---|
| 81 | w1 = omega(1); |
---|
| 82 | w2 = omega(2); |
---|
| 83 | w3 = omega(3); |
---|
| 84 | |
---|
| 85 | dm1dm2(13:21,1) = [2*w1;w2;w3;w2;0;0;w3;0;0]; |
---|
| 86 | dm1dm2(13: 21,2) = [0;w1;0;w1;2*w2;w3;0;w3;0]; |
---|
| 87 | dm1dm2(13:21,3) = [0;0;w1;0;0;w2;w1;w2;2*w3]; |
---|
| 88 | |
---|
| 89 | R = eye(3)*alpha + omegav*beta + A*gamma; |
---|
| 90 | |
---|
| 91 | dRdm1 = zeros(9,21); |
---|
| 92 | |
---|
| 93 | dRdm1([1 5 9],1) = ones(3,1); |
---|
| 94 | dRdm1(:,2) = omegav(:); |
---|
| 95 | dRdm1(:,4:12) = beta*eye(9); |
---|
| 96 | dRdm1(:,3) = A(:); |
---|
| 97 | dRdm1(:,13:21) = gamma*eye(9); |
---|
| 98 | |
---|
| 99 | dRdin = dRdm1 * dm1dm2 * dm2dm3 * dm3din; |
---|
| 100 | |
---|
| 101 | |
---|
| 102 | end; |
---|
| 103 | out = R; |
---|
| 104 | dout = dRdin; |
---|
| 105 | |
---|
| 106 | %% it is prob. a rot matr. |
---|
| 107 | elseif ((m==n) & (m==3) & (norm(in' * in - eye(3)) < bigeps)... |
---|
| 108 | & (abs(det(in)-1) < bigeps)) |
---|
| 109 | R = in; |
---|
| 110 | |
---|
| 111 | % project the rotation matrix to SO(3); |
---|
| 112 | [U,S,V] = svd(R); |
---|
| 113 | R = U*V'; |
---|
| 114 | |
---|
| 115 | tr = (trace(R)-1)/2; |
---|
| 116 | dtrdR = [1 0 0 0 1 0 0 0 1]/2; |
---|
| 117 | theta = real(acos(tr)); |
---|
| 118 | |
---|
| 119 | |
---|
| 120 | if sin(theta) >= 1e-4, |
---|
| 121 | |
---|
| 122 | dthetadtr = -1/sqrt(1-tr^2); |
---|
| 123 | |
---|
| 124 | dthetadR = dthetadtr * dtrdR; |
---|
| 125 | % var1 = [vth;theta]; |
---|
| 126 | vth = 1/(2*sin(theta)); |
---|
| 127 | dvthdtheta = -vth*cos(theta)/sin(theta); |
---|
| 128 | dvar1dtheta = [dvthdtheta;1]; |
---|
| 129 | |
---|
| 130 | dvar1dR = dvar1dtheta * dthetadR; |
---|
| 131 | |
---|
| 132 | |
---|
| 133 | om1 = [R(3,2)-R(2,3), R(1,3)-R(3,1), R(2,1)-R(1,2)]'; |
---|
| 134 | |
---|
| 135 | dom1dR = [0 0 0 0 0 1 0 -1 0; |
---|
| 136 | 0 0 -1 0 0 0 1 0 0; |
---|
| 137 | 0 1 0 -1 0 0 0 0 0]; |
---|
| 138 | |
---|
| 139 | % var = [om1;vth;theta]; |
---|
| 140 | dvardR = [dom1dR;dvar1dR]; |
---|
| 141 | |
---|
| 142 | % var2 = [om;theta]; |
---|
| 143 | om = vth*om1; |
---|
| 144 | domdvar = [vth*eye(3) om1 zeros(3,1)]; |
---|
| 145 | dthetadvar = [0 0 0 0 1]; |
---|
| 146 | dvar2dvar = [domdvar;dthetadvar]; |
---|
| 147 | |
---|
| 148 | |
---|
| 149 | out = om*theta; |
---|
| 150 | domegadvar2 = [theta*eye(3) om]; |
---|
| 151 | |
---|
| 152 | dout = domegadvar2 * dvar2dvar * dvardR; |
---|
| 153 | |
---|
| 154 | |
---|
| 155 | else |
---|
| 156 | if tr > 0; % case norm(om)=0; |
---|
| 157 | |
---|
| 158 | out = [0 0 0]'; |
---|
| 159 | |
---|
| 160 | dout = [0 0 0 0 0 1/2 0 -1/2 0; |
---|
| 161 | 0 0 -1/2 0 0 0 1/2 0 0; |
---|
| 162 | 0 1/2 0 -1/2 0 0 0 0 0]; |
---|
| 163 | else |
---|
| 164 | |
---|
| 165 | % case norm(om)=pi; |
---|
| 166 | if(0) |
---|
| 167 | |
---|
| 168 | %% fixed April 6th by Bouguet -- not working in all cases! |
---|
| 169 | out = theta * (sqrt((diag(R)+1)/2).*[1;2*(R(1,2:3)>=0)'-1]); |
---|
| 170 | %keyboard; |
---|
| 171 | |
---|
| 172 | else |
---|
| 173 | |
---|
| 174 | % Solution by Mike Burl on Feb 27, 2007 |
---|
| 175 | % This is a better way to determine the signs of the |
---|
| 176 | % entries of the rotation vector using a hash table on all |
---|
| 177 | % the combinations of signs of a pairs of products (in the |
---|
| 178 | % rotation matrix) |
---|
| 179 | |
---|
| 180 | % Define hashvec and Smat |
---|
| 181 | hashvec = [0; -1; -3; -9; 9; 3; 1; 13; 5; -7; -11]; |
---|
| 182 | Smat = [1,1,1; 1,0,-1; 0,1,-1; 1,-1,0; 1,1,0; 0,1,1; 1,0,1; 1,1,1; 1,1,-1; |
---|
| 183 | 1,-1,-1; 1,-1,1]; |
---|
| 184 | |
---|
| 185 | M = (R+eye(3,3))/2; |
---|
| 186 | uabs = sqrt(M(1,1)); |
---|
| 187 | vabs = sqrt(M(2,2)); |
---|
| 188 | wabs = sqrt(M(3,3)); |
---|
| 189 | |
---|
| 190 | mvec = ([M(1,2), M(2,3), M(1,3)] + [M(2,1), M(3,2), M(3,1)])/2; |
---|
| 191 | syn = ((mvec > eps) - (mvec < -eps)); % robust sign() function |
---|
| 192 | hash = syn * [9; 3; 1]; |
---|
| 193 | idx = find(hash == hashvec); |
---|
| 194 | svec = Smat(idx,:)'; |
---|
| 195 | |
---|
| 196 | out = theta * [uabs; vabs; wabs] .* svec; |
---|
| 197 | |
---|
| 198 | end; |
---|
| 199 | |
---|
| 200 | if nargout > 1, |
---|
| 201 | fprintf(1,'WARNING!!!! Jacobian domdR undefined!!!\n'); |
---|
| 202 | dout = NaN*ones(3,9); |
---|
| 203 | end; |
---|
| 204 | end; |
---|
| 205 | end; |
---|
| 206 | |
---|
| 207 | else |
---|
| 208 | error('Neither a rotation matrix nor a rotation vector were provided'); |
---|
| 209 | end; |
---|
| 210 | |
---|
| 211 | return; |
---|
| 212 | |
---|
| 213 | %% test of the Jacobians: |
---|
| 214 | |
---|
| 215 | %% TEST OF dRdom: |
---|
| 216 | om = randn(3,1); |
---|
| 217 | dom = randn(3,1)/1000000; |
---|
| 218 | [R1,dR1] = rodrigues(om); |
---|
| 219 | R2 = rodrigues(om+dom); |
---|
| 220 | R2a = R1 + reshape(dR1 * dom,3,3); |
---|
| 221 | gain = norm(R2 - R1)/norm(R2 - R2a) |
---|
| 222 | |
---|
| 223 | %% TEST OF dOmdR: |
---|
| 224 | om = randn(3,1); |
---|
| 225 | R = rodrigues(om); |
---|
| 226 | dom = randn(3,1)/10000; |
---|
| 227 | dR = rodrigues(om+dom) - R; |
---|
| 228 | |
---|
| 229 | [omc,domdR] = rodrigues(R); |
---|
| 230 | [om2] = rodrigues(R+dR); |
---|
| 231 | om_app = omc + domdR*dR(:); |
---|
| 232 | gain = norm(om2 - omc)/norm(om2 - om_app) |
---|
| 233 | |
---|
| 234 | |
---|
| 235 | %% OTHER BUG: (FIXED NOW!!!) |
---|
| 236 | omu = randn(3,1); |
---|
| 237 | omu = omu/norm(omu) |
---|
| 238 | om = pi*omu; |
---|
| 239 | [R,dR]= rodrigues(om); |
---|
| 240 | [om2] = rodrigues(R); |
---|
| 241 | [om om2] |
---|
| 242 | |
---|
| 243 | %% NORMAL OPERATION |
---|
| 244 | om = randn(3,1); |
---|
| 245 | [R,dR]= rodrigues(om); |
---|
| 246 | [om2] = rodrigues(R); |
---|
| 247 | [om om2] |
---|
| 248 | |
---|
| 249 | %% Test: norm(om) = pi |
---|
| 250 | u = randn(3,1); |
---|
| 251 | u = u / sqrt(sum(u.^2)); |
---|
| 252 | om = pi*u; |
---|
| 253 | R = rodrigues(om); |
---|
| 254 | R2 = rodrigues(rodrigues(R)); |
---|
| 255 | norm(R - R2) |
---|
| 256 | |
---|
| 257 | %% Another test case where norm(om)=pi from Chen Feng (June 27th, 2014) |
---|
| 258 | R = [-0.950146567583153 -6.41765854280073e-05 0.311803617668748; ... |
---|
| 259 | -6.41765854277654e-05 -0.999999917385145 -0.000401386434914383; ... |
---|
| 260 | 0.311803617668748 -0.000401386434914345 0.950146484968298]; |
---|
| 261 | om = rodrigues(R) |
---|
| 262 | norm(om) - pi |
---|
| 263 | |
---|
| 264 | %% Another test case where norm(om)=pi from äœæä¹ (July 1st, 2014) |
---|
| 265 | R = [-0.999920129411407 -6.68593208347372e-05 -0.0126384464118876; ... |
---|
| 266 | 9.53007036072085e-05 -0.999997464662094 -0.00224979713751896; ... |
---|
| 267 | -0.0126382639492467 -0.00225082189773293 0.999917600647740]; |
---|
| 268 | om = rodrigues(R) |
---|
| 269 | norm(om) - pi |
---|
| 270 | |
---|
| 271 | |
---|
| 272 | |
---|
| 273 | |
---|