[810] | 1 | %=======================================================================
|
---|
[908] | 2 | % Copyright 2008-2015, LEGI UMR 5519 / CNRS UJF G-INP, Grenoble, France
|
---|
[810] | 3 | % http://www.legi.grenoble-inp.fr
|
---|
| 4 | % Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr
|
---|
| 5 | %
|
---|
| 6 | % This file is part of the toolbox UVMAT.
|
---|
| 7 | %
|
---|
| 8 | % UVMAT is free software; you can redistribute it and/or modify
|
---|
| 9 | % it under the terms of the GNU General Public License as published
|
---|
| 10 | % by the Free Software Foundation; either version 2 of the license,
|
---|
| 11 | % or (at your option) any later version.
|
---|
| 12 | %
|
---|
| 13 | % UVMAT is distributed in the hope that it will be useful,
|
---|
| 14 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | % GNU General Public License (see LICENSE.txt) for more details.
|
---|
| 17 | %=======================================================================
|
---|
| 18 |
|
---|
[725] | 19 | function [out,dout]=rodrigues(in)
|
---|
| 20 |
|
---|
| 21 | % RODRIGUES Transform rotation matrix into rotation vector and viceversa.
|
---|
| 22 | %
|
---|
| 23 | % Sintax: [OUT]=RODRIGUES(IN)
|
---|
| 24 | % If IN is a 3x3 rotation matrix then OUT is the
|
---|
| 25 | % corresponding 3x1 rotation vector
|
---|
| 26 | % if IN is a rotation 3-vector then OUT is the
|
---|
| 27 | % corresponding 3x3 rotation matrix
|
---|
| 28 | %
|
---|
| 29 |
|
---|
| 30 | %%
|
---|
| 31 | %% Copyright (c) March 1993 -- Pietro Perona
|
---|
| 32 | %% California Institute of Technology
|
---|
| 33 | %%
|
---|
| 34 |
|
---|
| 35 | %% ALL CHECKED BY JEAN-YVES BOUGUET, October 1995.
|
---|
| 36 | %% FOR ALL JACOBIAN MATRICES !!! LOOK AT THE TEST AT THE END !!
|
---|
| 37 |
|
---|
| 38 | %% BUG when norm(om)=pi fixed -- April 6th, 1997;
|
---|
| 39 | %% Jean-Yves Bouguet
|
---|
| 40 |
|
---|
| 41 | %% Add projection of the 3x3 matrix onto the set of special ortogonal matrices SO(3) by SVD -- February 7th, 2003;
|
---|
| 42 | %% Jean-Yves Bouguet
|
---|
| 43 |
|
---|
| 44 | % BUG FOR THE CASE norm(om)=pi fixed by Mike Burl on Feb 27, 2007
|
---|
| 45 |
|
---|
| 46 |
|
---|
| 47 | [m,n] = size(in);
|
---|
| 48 | %bigeps = 10e+4*eps;
|
---|
| 49 | bigeps = 10e+20*eps;
|
---|
| 50 |
|
---|
| 51 | if ((m==1) & (n==3)) | ((m==3) & (n==1)) %% it is a rotation vector
|
---|
| 52 | theta = norm(in);
|
---|
| 53 | if theta < eps
|
---|
| 54 | R = eye(3);
|
---|
| 55 |
|
---|
| 56 | %if nargout > 1,
|
---|
| 57 |
|
---|
| 58 | dRdin = [0 0 0;
|
---|
| 59 | 0 0 1;
|
---|
| 60 | 0 -1 0;
|
---|
| 61 | 0 0 -1;
|
---|
| 62 | 0 0 0;
|
---|
| 63 | 1 0 0;
|
---|
| 64 | 0 1 0;
|
---|
| 65 | -1 0 0;
|
---|
| 66 | 0 0 0];
|
---|
| 67 |
|
---|
| 68 | %end;
|
---|
| 69 |
|
---|
| 70 | else
|
---|
| 71 | if n==length(in) in=in'; end; %% make it a column vec. if necess.
|
---|
| 72 |
|
---|
| 73 | %m3 = [in,theta]
|
---|
| 74 |
|
---|
| 75 | dm3din = [eye(3);in'/theta];
|
---|
| 76 |
|
---|
| 77 | omega = in/theta;
|
---|
| 78 |
|
---|
| 79 | %m2 = [omega;theta]
|
---|
| 80 |
|
---|
| 81 | dm2dm3 = [eye(3)/theta -in/theta^2; zeros(1,3) 1];
|
---|
| 82 |
|
---|
| 83 | alpha = cos(theta);
|
---|
| 84 | beta = sin(theta);
|
---|
| 85 | gamma = 1-cos(theta);
|
---|
| 86 | omegav=[[0 -omega(3) omega(2)];[omega(3) 0 -omega(1)];[-omega(2) omega(1) 0 ]];
|
---|
| 87 | A = omega*omega';
|
---|
| 88 |
|
---|
| 89 | %m1 = [alpha;beta;gamma;omegav;A];
|
---|
| 90 |
|
---|
| 91 | dm1dm2 = zeros(21,4);
|
---|
| 92 | dm1dm2(1,4) = -sin(theta);
|
---|
| 93 | dm1dm2(2,4) = cos(theta);
|
---|
| 94 | dm1dm2(3,4) = sin(theta);
|
---|
| 95 | dm1dm2(4:12,1:3) = [0 0 0 0 0 1 0 -1 0;
|
---|
| 96 | 0 0 -1 0 0 0 1 0 0;
|
---|
| 97 | 0 1 0 -1 0 0 0 0 0]';
|
---|
| 98 |
|
---|
| 99 | w1 = omega(1);
|
---|
| 100 | w2 = omega(2);
|
---|
| 101 | w3 = omega(3);
|
---|
| 102 |
|
---|
| 103 | dm1dm2(13:21,1) = [2*w1;w2;w3;w2;0;0;w3;0;0];
|
---|
| 104 | dm1dm2(13: 21,2) = [0;w1;0;w1;2*w2;w3;0;w3;0];
|
---|
| 105 | dm1dm2(13:21,3) = [0;0;w1;0;0;w2;w1;w2;2*w3];
|
---|
| 106 |
|
---|
| 107 | R = eye(3)*alpha + omegav*beta + A*gamma;
|
---|
| 108 |
|
---|
| 109 | dRdm1 = zeros(9,21);
|
---|
| 110 |
|
---|
| 111 | dRdm1([1 5 9],1) = ones(3,1);
|
---|
| 112 | dRdm1(:,2) = omegav(:);
|
---|
| 113 | dRdm1(:,4:12) = beta*eye(9);
|
---|
| 114 | dRdm1(:,3) = A(:);
|
---|
| 115 | dRdm1(:,13:21) = gamma*eye(9);
|
---|
| 116 |
|
---|
| 117 | dRdin = dRdm1 * dm1dm2 * dm2dm3 * dm3din;
|
---|
| 118 |
|
---|
| 119 |
|
---|
| 120 | end;
|
---|
| 121 | out = R;
|
---|
| 122 | dout = dRdin;
|
---|
| 123 |
|
---|
| 124 | %% it is prob. a rot matr.
|
---|
| 125 | elseif ((m==n) & (m==3) & (norm(in' * in - eye(3)) < bigeps)...
|
---|
| 126 | & (abs(det(in)-1) < bigeps))
|
---|
| 127 | R = in;
|
---|
| 128 |
|
---|
| 129 | % project the rotation matrix to SO(3);
|
---|
| 130 | [U,S,V] = svd(R);
|
---|
| 131 | R = U*V';
|
---|
| 132 |
|
---|
| 133 | tr = (trace(R)-1)/2;
|
---|
| 134 | dtrdR = [1 0 0 0 1 0 0 0 1]/2;
|
---|
| 135 | theta = real(acos(tr));
|
---|
| 136 |
|
---|
| 137 |
|
---|
| 138 | if sin(theta) >= 1e-4,
|
---|
| 139 |
|
---|
| 140 | dthetadtr = -1/sqrt(1-tr^2);
|
---|
| 141 |
|
---|
| 142 | dthetadR = dthetadtr * dtrdR;
|
---|
| 143 | % var1 = [vth;theta];
|
---|
| 144 | vth = 1/(2*sin(theta));
|
---|
| 145 | dvthdtheta = -vth*cos(theta)/sin(theta);
|
---|
| 146 | dvar1dtheta = [dvthdtheta;1];
|
---|
| 147 |
|
---|
| 148 | dvar1dR = dvar1dtheta * dthetadR;
|
---|
| 149 |
|
---|
| 150 |
|
---|
| 151 | om1 = [R(3,2)-R(2,3), R(1,3)-R(3,1), R(2,1)-R(1,2)]';
|
---|
| 152 |
|
---|
| 153 | dom1dR = [0 0 0 0 0 1 0 -1 0;
|
---|
| 154 | 0 0 -1 0 0 0 1 0 0;
|
---|
| 155 | 0 1 0 -1 0 0 0 0 0];
|
---|
| 156 |
|
---|
| 157 | % var = [om1;vth;theta];
|
---|
| 158 | dvardR = [dom1dR;dvar1dR];
|
---|
| 159 |
|
---|
| 160 | % var2 = [om;theta];
|
---|
| 161 | om = vth*om1;
|
---|
| 162 | domdvar = [vth*eye(3) om1 zeros(3,1)];
|
---|
| 163 | dthetadvar = [0 0 0 0 1];
|
---|
| 164 | dvar2dvar = [domdvar;dthetadvar];
|
---|
| 165 |
|
---|
| 166 |
|
---|
| 167 | out = om*theta;
|
---|
| 168 | domegadvar2 = [theta*eye(3) om];
|
---|
| 169 |
|
---|
| 170 | dout = domegadvar2 * dvar2dvar * dvardR;
|
---|
| 171 |
|
---|
| 172 |
|
---|
| 173 | else
|
---|
| 174 | if tr > 0; % case norm(om)=0;
|
---|
| 175 |
|
---|
| 176 | out = [0 0 0]';
|
---|
| 177 |
|
---|
| 178 | dout = [0 0 0 0 0 1/2 0 -1/2 0;
|
---|
| 179 | 0 0 -1/2 0 0 0 1/2 0 0;
|
---|
| 180 | 0 1/2 0 -1/2 0 0 0 0 0];
|
---|
| 181 | else
|
---|
| 182 |
|
---|
| 183 | % case norm(om)=pi;
|
---|
| 184 | if(0)
|
---|
| 185 |
|
---|
| 186 | %% fixed April 6th by Bouguet -- not working in all cases!
|
---|
| 187 | out = theta * (sqrt((diag(R)+1)/2).*[1;2*(R(1,2:3)>=0)'-1]);
|
---|
| 188 | %keyboard;
|
---|
| 189 |
|
---|
| 190 | else
|
---|
| 191 |
|
---|
| 192 | % Solution by Mike Burl on Feb 27, 2007
|
---|
| 193 | % This is a better way to determine the signs of the
|
---|
| 194 | % entries of the rotation vector using a hash table on all
|
---|
| 195 | % the combinations of signs of a pairs of products (in the
|
---|
| 196 | % rotation matrix)
|
---|
| 197 |
|
---|
| 198 | % Define hashvec and Smat
|
---|
| 199 | hashvec = [0; -1; -3; -9; 9; 3; 1; 13; 5; -7; -11];
|
---|
| 200 | Smat = [1,1,1; 1,0,-1; 0,1,-1; 1,-1,0; 1,1,0; 0,1,1; 1,0,1; 1,1,1; 1,1,-1;
|
---|
| 201 | 1,-1,-1; 1,-1,1];
|
---|
| 202 |
|
---|
| 203 | M = (R+eye(3,3))/2;
|
---|
| 204 | uabs = sqrt(M(1,1));
|
---|
| 205 | vabs = sqrt(M(2,2));
|
---|
| 206 | wabs = sqrt(M(3,3));
|
---|
| 207 |
|
---|
| 208 | mvec = [M(1,2), M(2,3), M(1,3)];
|
---|
| 209 | syn = ((mvec > 1e-4) - (mvec < -1e-4)); % robust sign() function
|
---|
| 210 | hash = syn * [9; 3; 1];
|
---|
| 211 | idx = find(hash == hashvec);
|
---|
| 212 | svec = Smat(idx,:)';
|
---|
| 213 |
|
---|
| 214 | out = theta * [uabs; vabs; wabs] .* svec;
|
---|
| 215 |
|
---|
| 216 | end;
|
---|
| 217 |
|
---|
| 218 | if nargout > 1,
|
---|
| 219 | fprintf(1,'WARNING!!!! Jacobian domdR undefined!!!\n');
|
---|
| 220 | dout = NaN*ones(3,9);
|
---|
| 221 | end;
|
---|
| 222 | end;
|
---|
| 223 | end;
|
---|
| 224 |
|
---|
| 225 | else
|
---|
| 226 | error('Neither a rotation matrix nor a rotation vector were provided');
|
---|
| 227 | end;
|
---|
| 228 |
|
---|
| 229 | return;
|
---|
| 230 |
|
---|
| 231 | %% test of the Jacobians:
|
---|
| 232 |
|
---|
| 233 | %%%% TEST OF dRdom:
|
---|
| 234 | om = randn(3,1);
|
---|
| 235 | dom = randn(3,1)/1000000;
|
---|
| 236 |
|
---|
| 237 | [R1,dR1] = rodrigues(om);
|
---|
| 238 | R2 = rodrigues(om+dom);
|
---|
| 239 |
|
---|
| 240 | R2a = R1 + reshape(dR1 * dom,3,3);
|
---|
| 241 |
|
---|
| 242 | gain = norm(R2 - R1)/norm(R2 - R2a)
|
---|
| 243 |
|
---|
| 244 | %%% TEST OF dOmdR:
|
---|
| 245 | om = randn(3,1);
|
---|
| 246 | R = rodrigues(om);
|
---|
| 247 | dom = randn(3,1)/10000;
|
---|
| 248 | dR = rodrigues(om+dom) - R;
|
---|
| 249 |
|
---|
| 250 | [omc,domdR] = rodrigues(R);
|
---|
| 251 | [om2] = rodrigues(R+dR);
|
---|
| 252 |
|
---|
| 253 | om_app = omc + domdR*dR(:);
|
---|
| 254 |
|
---|
| 255 | gain = norm(om2 - omc)/norm(om2 - om_app)
|
---|
| 256 |
|
---|
| 257 |
|
---|
| 258 | %%% OTHER BUG: (FIXED NOW!!!)
|
---|
| 259 |
|
---|
| 260 | omu = randn(3,1);
|
---|
| 261 | omu = omu/norm(omu)
|
---|
| 262 | om = pi*omu;
|
---|
| 263 | [R,dR]= rodrigues(om);
|
---|
| 264 | [om2] = rodrigues(R);
|
---|
| 265 | [om om2]
|
---|
| 266 |
|
---|
| 267 | %%% NORMAL OPERATION
|
---|
| 268 |
|
---|
| 269 | om = randn(3,1);
|
---|
| 270 | [R,dR]= rodrigues(om);
|
---|
| 271 | [om2] = rodrigues(R);
|
---|
| 272 | [om om2]
|
---|
| 273 |
|
---|
| 274 | return
|
---|
| 275 |
|
---|
| 276 | % Test: norm(om) = pi
|
---|
| 277 |
|
---|
| 278 | u = randn(3,1);
|
---|
| 279 | u = u / sqrt(sum(u.^2));
|
---|
| 280 | om = pi*u;
|
---|
| 281 | R = rodrigues(om);
|
---|
| 282 |
|
---|
| 283 | R2 = rodrigues(rodrigues(R));
|
---|
| 284 |
|
---|
[810] | 285 | norm(R - R2)
|
---|