1 | %'tps_uvmat': calculate thin plate shell coefficients |
---|
2 | %------------------------------------------------------------------------ |
---|
3 | %fasshauer@iit.edu MATH 590 ? Chapter 19 32 |
---|
4 | % X,Y initial coordiantes |
---|
5 | % XI vector, YI column vector for the grid of interpolation points |
---|
6 | function [U_smooth,U_tps]=tps_coeff(X,Y,U,rho) |
---|
7 | %------------------------------------------------------------------------ |
---|
8 | %rho smoothing parameter |
---|
9 | % ep = 1; |
---|
10 | X=reshape(X,[],1); |
---|
11 | Y=reshape(Y,[],1); |
---|
12 | N=numel(X); |
---|
13 | rhs = reshape(U,[],1); |
---|
14 | rhs = [rhs; zeros(3,1)]; |
---|
15 | ctrs = [X Y];% coordinates of measurement sites, radial base functions are located at the measurement sites |
---|
16 | %ctrs = dsites;%radial base functions are located at the measurement sites |
---|
17 | EM = tps_eval(ctrs,ctrs); |
---|
18 | % DM_data = DistanceMatrix(ctrs,ctrs);%2D matrix of distances between spline centres (=initial points) ctrs |
---|
19 | % IM_sites = tps(1,DM_data);%values of thin plate at site points |
---|
20 | % PM=[ones(N,1) ctrs]; |
---|
21 | % EM = [IM_sites PM]; |
---|
22 | %IM = IM_sites + rho*eye(size(IM_sites));% rho=1/(2*omega) , omega given by fasshauer; |
---|
23 | |
---|
24 | %IM=[IM PM; [PM' zeros(3,3)]]; |
---|
25 | RhoMat=rho*eye(N,N);% rho=1/(2*omega) , omega given by fasshauer; |
---|
26 | RhoMat=[RhoMat zeros(N,3)]; |
---|
27 | PM=[ones(N,1) ctrs]; |
---|
28 | |
---|
29 | IM=[EM+RhoMat; [PM' zeros(3,3)]]; |
---|
30 | %fprintf('Condition number estimate: %e\n',condest(IM)) |
---|
31 | %DM_eval = DistanceMatrix(epoints,ctrs);%2D matrix of distances between extrapolation points epoints and spline centres (=site points) ctrs |
---|
32 | %EM = tps(ep,DM_eval);%values of thin plate |
---|
33 | %PM = [ones(size(epoints,1),1) epoints]; |
---|
34 | %EM = [EM PM]; |
---|
35 | U_tps=(IM\rhs); |
---|
36 | % PM = [ones(size(dsites,1),1) dsites]; |
---|
37 | |
---|
38 | U_smooth=EM *U_tps; |
---|