1 | %'tps_coeff': calculate the thin plate spline (tps) coefficients |
---|

2 | % (ref fasshauer@iit.edu MATH 590 ? Chapter 19 32) |
---|

3 | % this interpolation/smoothing minimises a linear combination of the squared curvature |
---|

4 | % and squared difference form the initial data. |
---|

5 | % This function calculates the weight coefficients U_tps of the N sites where |
---|

6 | % data are known. Interpolated data are then obtained as the matrix product |
---|

7 | % EM*U_tps where the matrix EM is obtained by the function tps_eval. |
---|

8 | % The spatial derivatives are obtained as EMDX*U_tps and EMDY*U_tps, where |
---|

9 | % EMDX and EMDY are obtained from the function tps_eval_dxy. |
---|

10 | % for big data sets, a splitting in subdomains is needed, see functions |
---|

11 | % set_subdomains and tps_coeff_field. |
---|

12 | % |
---|

13 | %------------------------------------------------------------------------ |
---|

14 | % [U_smooth,U_tps]=tps_coeff(ctrs,U,Smoothing) |
---|

15 | %------------------------------------------------------------------------ |
---|

16 | % OUPUT: |
---|

17 | % U_smooth: values of the quantity U at the N centres after smoothing |
---|

18 | % U_tps: tps weights of the centres and columns of the linear |
---|

19 | |
---|

20 | %INPUT: |
---|

21 | % ctrs: NxNbDim matrix representing the positions of the N centers, sources of the tps (NbDim=space dimension) |
---|

22 | % U: Nx1 column vector representing the values of the considered scalar measured at the centres ctrs |
---|

23 | % Smoothing: smoothing parameter: the result is smoother for larger Smoothing. |
---|

24 | % |
---|

25 | %related functions: |
---|

26 | % tps_eval, tps_eval_dxy |
---|

27 | % tps_coeff_field, set_subdomains, filter_tps, calc_field |
---|

28 | |
---|

29 | function [U_smooth,U_tps]=tps_coeff(ctrs,U,Smoothing) |
---|

30 | %------------------------------------------------------------------------ |
---|

31 | warning off |
---|

32 | N=size(ctrs,1);% nbre of source centres |
---|

33 | NbDim=size(ctrs,2);% space dimension (2 or 3) |
---|

34 | U = [U; zeros(NbDim+1,1)]; |
---|

35 | EM = tps_eval(ctrs,ctrs); |
---|

36 | SmoothingMat=Smoothing*eye(N,N);% Smoothing=1/(2*omega) , omega given by fasshauer; |
---|

37 | SmoothingMat=[SmoothingMat zeros(N,NbDim+1)]; |
---|

38 | PM=[ones(N,1) ctrs]; |
---|

39 | IM=[EM+SmoothingMat; [PM' zeros(NbDim+1,NbDim+1)]]; |
---|

40 | U_tps=(IM\U); |
---|

41 | U_smooth=EM *U_tps; |
---|