| 1 | %'tps_coeff': calculate the thin plate spline (tps) coefficients |
|---|
| 2 | % (ref fasshauer@iit.edu MATH 590 ? Chapter 19 32) |
|---|
| 3 | % this interpolation/smoothing minimises a linear combination of the squared curvature |
|---|
| 4 | % and squared difference form the initial data. |
|---|
| 5 | % This function calculates the weight coefficients U_tps of the N sites where |
|---|
| 6 | % data are known. Interpolated data are then obtained as the matrix product |
|---|
| 7 | % EM*U_tps where the matrix EM is obtained by the function tps_eval. |
|---|
| 8 | % The spatial derivatives are obtained as EMDX*U_tps and EMDY*U_tps, where |
|---|
| 9 | % EMDX and EMDY are obtained from the function tps_eval_dxy. |
|---|
| 10 | % for big data sets, a splitting in subdomains is needed, see functions |
|---|
| 11 | % set_subdomains and tps_coeff_field. |
|---|
| 12 | % |
|---|
| 13 | %------------------------------------------------------------------------ |
|---|
| 14 | % [U_smooth,U_tps]=tps_coeff(ctrs,U,Smoothing) |
|---|
| 15 | %------------------------------------------------------------------------ |
|---|
| 16 | % OUPUT: |
|---|
| 17 | % U_smooth: values of the quantity U at the N centres after smoothing |
|---|
| 18 | % U_tps: tps weights of the centres and columns of the linear |
|---|
| 19 | |
|---|
| 20 | %INPUT: |
|---|
| 21 | % ctrs: NxNbDim matrix representing the positions of the N centers, sources of the tps (NbDim=space dimension) |
|---|
| 22 | % U: Nx1 column vector representing the values of the considered scalar measured at the centres ctrs |
|---|
| 23 | % Smoothing: smoothing parameter: the result is smoother for larger Smoothing. |
|---|
| 24 | % |
|---|
| 25 | %related functions: |
|---|
| 26 | % tps_eval, tps_eval_dxy |
|---|
| 27 | % tps_coeff_field, set_subdomains, filter_tps, calc_field |
|---|
| 28 | |
|---|
| 29 | function [U_smooth,U_tps]=tps_coeff(ctrs,U,Smoothing) |
|---|
| 30 | %------------------------------------------------------------------------ |
|---|
| 31 | warning off |
|---|
| 32 | N=size(ctrs,1);% nbre of source centres |
|---|
| 33 | NbDim=size(ctrs,2);% space dimension (2 or 3) |
|---|
| 34 | U = [U; zeros(NbDim+1,1)]; |
|---|
| 35 | EM = tps_eval(ctrs,ctrs); |
|---|
| 36 | SmoothingMat=Smoothing*eye(N,N);% Smoothing=1/(2*omega) , omega given by fasshauer; |
|---|
| 37 | SmoothingMat=[SmoothingMat zeros(N,NbDim+1)]; |
|---|
| 38 | PM=[ones(N,1) ctrs]; |
|---|
| 39 | IM=[EM+SmoothingMat; [PM' zeros(NbDim+1,NbDim+1)]]; |
|---|
| 40 | U_tps=(IM\U); |
|---|
| 41 | U_smooth=EM *U_tps; |
|---|