[246] | 1 | % 'DXYMatrix': calculate the matrix of thin-plate shell derivatives |
---|
| 2 | % |
---|
| 3 | % function DMXY = DXYMatrix(dsites,ctrs) |
---|
| 4 | % |
---|
| 5 | % INPUT: |
---|
| 6 | % dsites: M x s matrix of interpolation site coordinates (s=space dimension) |
---|
| 7 | % ctrs: N x s matrix of centre coordinates (initial data) |
---|
| 8 | % |
---|
| 9 | % OUTPUT: |
---|
| 10 | % DMXY: Mx(N+1+s)xs matrix corresponding to M interpolation sites and |
---|
| 11 | % N centres, with s=space dimension, DMXY(:,:,k) gives the derivatives |
---|
| 12 | % along dimension k (=x, y,z) after multiplication by the N+1+s tps sources. |
---|
[247] | 13 | function [DMX,DMY] = tps_eval_dxy(dsites,ctrs) |
---|
[246] | 14 | %% matrix declarations |
---|
| 15 | [M,s] = size(dsites); [N,s] = size(ctrs); |
---|
[247] | 16 | Dsites=zeros(M,N); |
---|
[246] | 17 | DM = zeros(M,N); |
---|
[247] | 18 | % DMXY = zeros(M,N+1+s); |
---|
[246] | 19 | |
---|
| 20 | %% Accumulate sum of squares of coordinate differences |
---|
| 21 | % The ndgrid command produces two MxN matrices: |
---|
| 22 | % Dsites, consisting of N identical columns (each containing |
---|
| 23 | % the d-th coordinate of the M interpolation sites) |
---|
| 24 | % Ctrs, consisting of M identical rows (each containing |
---|
| 25 | % the d-th coordinate of the N centers) |
---|
| 26 | |
---|
[247] | 27 | [Dsites,Ctrs] = ndgrid(dsites(:,1),ctrs(:,1));%d coordinates of interpolation points (Dsites) and initial points (Ctrs) |
---|
| 28 | DX=Dsites-Ctrs; |
---|
| 29 | [Dsites,Ctrs] = ndgrid(dsites(:,2),ctrs(:,2));%d coordinates of interpolation points (Dsites) and initial points (Ctrs) |
---|
| 30 | DY=Dsites-Ctrs; |
---|
| 31 | DM = DX.*DX + DY.*DY;% add d component squared |
---|
| 32 | |
---|
| 33 | %% calculate matrix of tps derivatives |
---|
| 34 | DM(DM~=0) = log(DM(DM~=0))+1; %=2 log(r)+1 derivative of the tps r^2 log(r) |
---|
| 35 | |
---|
| 36 | DMX=[DX.*DM zeros(M,1) ones(M,1) zeros(M,1)];% effect of mean gradient |
---|
| 37 | DMY=[DY.*DM zeros(M,1) ones(M,1) zeros(M,1)];% effect of mean gradient |
---|
| 38 | |
---|