source: trunk/src/transform_field/ima2concentration.m @ 1075

Last change on this file since 1075 was 1075, checked in by sommeria, 5 years ago

LIF bug for series solved

File size: 4.9 KB
RevLine 
[1073]1%transform LIF images to concentration images
2
3%=======================================================================
4% Copyright 2008-2019, LEGI UMR 5519 / CNRS UGA G-INP, Grenoble, France
5%   http://www.legi.grenoble-inp.fr
6%   Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr
7%
8%     This file is part of the toolbox UVMAT.
9%
10%     UVMAT is free software; you can redistribute it and/or modify
11%     it under the terms of the GNU General Public License as published
12%     by the Free Software Foundation; either version 2 of the license,
13%     or (at your option) any later version.
14%
15%     UVMAT is distributed in the hope that it will be useful,
16%     but WITHOUT ANY WARRANTY; without even the implied warranty of
17%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18%     GNU General Public License (see LICENSE.txt) for more details.
19%=======================================================================
20
21function [DataOut]=ima2concentration(DataIn,XmlData)
[1074]22
[1073]23%% request input parameters
[1075]24DataOut=[];
25if (isfield(DataIn,'Action') && isfield(DataIn.Action,'RUN') && isequal(DataIn.Action.RUN,0))
26    return
27end
28if ~isfield(XmlData,'LIFCalib')
[1073]29        msgbox_uvmat('ERROR','no LIF calibration data available, first run LIFCalib in uvmat')
30    return
31end
32cpath=which('uvmat');
33addpath(fullfile(fileparts(cpath),'transform_field'))% define path for phys_polar.m
34
[1074]35%% Transform images to polar coordinates with origin at the light source position
[1073]36XmlData.TransformInput.PolarCentre=XmlData.LIFCalib.LightOrigin; %position of the laser origin [x, y]
37DataIn.Action.RUN=1;% avoid input menu in phys_polar
38DataOut=phys_polar(DataIn,XmlData);
[1074]39[npangle,npr]=size(DataOut.A);%size of the image in polar coordinates
40dX=(DataOut.Coord_x(2)-DataOut.Coord_x(1))/(npr-1);% radial step
[1073]41
[1074]42%% introduce the reference line where the laser enters the fluid region
[1073]43r_edge=XmlData.LIFCalib.RefLineRadius'*ones(1,npr);% radial position of the reference line extended as a matrix (npx,npy)
[1074]44A_ref=XmlData.LIFCalib.RefLineLum'*ones(1,npr);% luminosity on the reference line extended as a matrix (npx,npy)
[1073]45R=ones(npangle,1)*linspace(DataOut.Coord_x(1), DataOut.Coord_x(2),npr);%radial coordinate extended as a matrix (npx,npy)
46
[1074]47%gamma_coeff=XmlData.LIFCalib.DecayRate;
[1073]48DataOut.A(R<r_edge)=0;
[1074]49DataOut.A=double(DataOut.A)./A_ref;% renormalize the luminosity with the reference luminosity at the same azimuth on the reference line
50I=(r_edge-dX*XmlData.LIFCalib.DecayRate.*cumsum(R.*DataOut.A,2))./R;% expected laser intensity along the line
51DataOut.A=DataOut.A./I;%concentration normalized by the uniform concentration assumed in the ref image used for calibration
[1073]52DataOut.A(I<=0)=0;% eliminate values obtained with I<=0
53
[1074]54DataOut=polar2phys(DataOut);% back to phys cartesian coordinates with origin at the light source
55DataOut.A=uint16(1000*DataOut.A);% concentration multiplied by 1000 to get an image
56DataOut.Coord_x=DataOut.Coord_x+XmlData.LIFCalib.LightOrigin(1);%shift to original cartesian coordinates
[1073]57DataOut.Coord_y=DataOut.Coord_y+XmlData.LIFCalib.LightOrigin(2);
58
59
[1074]60function DataOut=polar2phys(DataIn)
[1073]61%%%%%%%%%%%%%%%%%%%%
[1074]62DataOut=DataIn; %default
[1073]63[npy,npx]=size(DataIn.A);
[1074]64dx=(DataIn.Coord_x(2)-DataIn.Coord_x(1))/(npx-1); %mesh along radius
65dy=(DataIn.Coord_y(2)-DataIn.Coord_y(1))/(npy-1);%mesh along azimuth
66
67%% create cartesian coordinates in the domain defined by the four image corners
[1073]68rcorner=[DataIn.Coord_x(1) DataIn.Coord_x(2) DataIn.Coord_x(1) DataIn.Coord_x(2)];% radius of the corners
69ycorner=[DataIn.Coord_y(2) DataIn.Coord_y(2) DataIn.Coord_y(1) DataIn.Coord_y(1)];% azimuth of the corners
70thetacorner=pi*ycorner/180;% azimuth in radians
71[Xcorner,Ycorner] = pol2cart(thetacorner,rcorner);% cartesian coordinates of the corners (with respect to lser source)
72RangeX(1)=min(Xcorner);
73RangeX(2)=max(Xcorner);
74RangeY(2)=min(Ycorner);
75RangeY(1)=max(Ycorner);
76x=linspace(RangeX(1),RangeX(2),npx);%coordinates of the new pixels
77y=linspace(RangeY(2),RangeY(1),npy);
[1074]78[X,Y]=meshgrid(x,y);%grid for new pixels in cartesian coordinates
[1073]79
[1074]80%% image indices corresponding to the cartesian grid
[1073]81[Theta,R] = cart2pol(X,Y);%corresponding polar coordiantes
[1074]82Theta=180*Theta/pi;%angles in degrees
83Theta=1-round((Theta-DataIn.Coord_y(2))/dy); %angular index along y (dy negative)
84R=1+round((R-DataIn.Coord_x(1))/dx); %angular index along x
[1073]85R=reshape(R,1,npx*npy);%indices reorganized in 'line'
86Theta=reshape(Theta,1,npx*npy);
87flagin=R>=1 & R<=npx & Theta >=1 & Theta<=npy;%flagin=1 inside the original image
88vec_A=reshape(DataIn.A,1,npx*npy);%put the original image in line
89ind_in=find(flagin);
90ind_out=find(~flagin);
91ICOMB=((R-1)*npy+(npy+1-Theta));
92ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A
93vec_B(ind_in)=vec_A(ICOMB);
94vec_B(ind_out)=zeros(size(ind_out));
95DataOut.A=flipdim(reshape(vec_B,npy,npx),1);%new image in real coordinates
96DataOut.Coord_x=RangeX;
97DataOut.Coord_y=RangeY; 
98
Note: See TracBrowser for help on using the repository browser.