% 'ima_remove_background': removes backgound from an image (using the local minimum) % requires the Matlab image processing toolbox %------------------------------------------------------------------------ %%%% Use the general syntax for transform fields with a single input %%%% % OUTPUT: % DataOut: output field structure % %INPUT: % DataIn: first input field structure %======================================================================= % Copyright 2008-2021, LEGI UMR 5519 / CNRS UGA G-INP, Grenoble, France % http://www.legi.grenoble-inp.fr % Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr % % This file is part of the toolbox UVMAT. % % UVMAT is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published % by the Free Software Foundation; either version 2 of the license, % or (at your option) any later version. % % UVMAT is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License (see LICENSE.txt) for more details. %======================================================================= function DataOut=ima_remove_background_blocks(DataIn,Param) %------------------------------------------------------------------------ %% request input parameters if isfield(DataIn,'Action') && isfield(DataIn.Action,'RUN') && isequal(DataIn.Action.RUN,0) prompt = {'block size(pixels)'}; dlg_title = 'get the block size (in pixels) used to calculate the local statistics'; num_lines= 1; def = { '100'}; if isfield(Param,'TransformInput')&&isfield(Param.TransformInput,'BlockSize') def={num2str(Param.TransformInput.BlockSize)}; end answer = inputdlg(prompt,dlg_title,num_lines,def); DataOut.TransformInput.BlockSize=str2num(answer{1}); return end if ~isfield(DataIn,'A') DataOut.Txt='remove_particles only valid for input images'; return end if ~exist('imerode','file'); DataOut.Txt='the function imerode from the image processing toolbox is needed'; return end %--------------------------------------------------------- DataOut=DataIn;%default nblock_y=2*Param.TransformInput.BlockSize; nblock_x=2*Param.TransformInput.BlockSize; [npy,npx]=size(DataIn.A); [X,Y]=meshgrid(1:npx,1:npy); %BACKGROUND LEVEL Atype=class(DataIn.A); A=double(DataIn.A); %Backg=zeros(size(A)); %Aflagmin=sparse(imregionalmin(A));%Amin=1 for local image minima %Amin=A.*Aflagmin;%values of A at local minima % local background: find all the local minima in image subblocks fctblock= inline('median(x(:))'); Backg=blkproc(A,[nblock_y nblock_x],fctblock);% take the median in blocks fctblock= inline('mean(x(:))'); B=imresize(Backg,size(A),'bilinear');% interpolate to the initial size image A=(A-B);%substract background AMean=blkproc(A,[nblock_y nblock_x],fctblock);% take the mean in blocks fctblock= inline('var(x(:))'); AVar=blkproc(A,[nblock_y nblock_x],fctblock);% take the mean in blocks Avalue=AVar./AMean% typical value of particle luminosity Avalue=imresize(Avalue,size(A),'bilinear');% interpolate to the initial size image DataOut.A=uint16(1000*tanh(A./(2*Avalue))); %Bmin=blkproc(Aflagmin,[nblock_y nblock_x],sumblock);% find the number of minima in blocks %Backg=Backg./Bmin; % find the average of minima in blocks