[783] | 1 | % 'ima_noise_rms': gives the variance of relative noise by difference to the
|
---|
| 2 | % filered image in ppm (part per million) (for grey scale image)
|
---|
| 3 | %------------------------------------------------------------------------
|
---|
| 4 | %%%% Use the general syntax for transform fields with a single input and parameters %%%%
|
---|
| 5 | % OUTPUT:
|
---|
| 6 | % DataOut: output field structure
|
---|
[810] | 7 | %
|
---|
[783] | 8 | %INPUT:
|
---|
| 9 | % DataIn: input field structure
|
---|
| 10 | % Param: matlab structure whose field Param.TransformInput contains the filter parameters
|
---|
| 11 |
|
---|
[810] | 12 | %=======================================================================
|
---|
[1061] | 13 | % Copyright 2008-2019, LEGI UMR 5519 / CNRS UGA G-INP, Grenoble, France
|
---|
[810] | 14 | % http://www.legi.grenoble-inp.fr
|
---|
| 15 | % Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr
|
---|
| 16 | %
|
---|
| 17 | % This file is part of the toolbox UVMAT.
|
---|
| 18 | %
|
---|
| 19 | % UVMAT is free software; you can redistribute it and/or modify
|
---|
| 20 | % it under the terms of the GNU General Public License as published
|
---|
| 21 | % by the Free Software Foundation; either version 2 of the license,
|
---|
| 22 | % or (at your option) any later version.
|
---|
| 23 | %
|
---|
| 24 | % UVMAT is distributed in the hope that it will be useful,
|
---|
| 25 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 26 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 27 | % GNU General Public License (see LICENSE.txt) for more details.
|
---|
| 28 | %=======================================================================
|
---|
| 29 |
|
---|
[783] | 30 | function DataOut=ima_noise_rms(DataIn,Param)
|
---|
| 31 |
|
---|
| 32 | %% request input parameters
|
---|
| 33 | if isfield(DataIn,'Action') && isfield(DataIn.Action,'RUN') && isequal(DataIn.Action.RUN,0)
|
---|
| 34 | prompt = {'npx';'npy'};
|
---|
| 35 | dlg_title = 'get the filter size in x and y';
|
---|
| 36 | num_lines= 2;
|
---|
| 37 | def = { '20';'20'};
|
---|
| 38 | if isfield(Param,'TransformInput')&&isfield(Param.TransformInput,'FilterBoxSize_x')&&...
|
---|
| 39 | isfield(Param.TransformInput,'FilterBoxSize_y')
|
---|
| 40 | def={num2str(Param.TransformInput.FilterBoxSize_x);num2str(Param.TransformInput.FilterBoxSize_y)};
|
---|
| 41 | end
|
---|
| 42 | answer = inputdlg(prompt,dlg_title,num_lines,def);
|
---|
| 43 | DataOut.TransformInput.FilterBoxSize_x=str2num(answer{1}); %size of the filtering window
|
---|
| 44 | DataOut.TransformInput.FilterBoxSize_y=str2num(answer{2}); %size of the filtering window
|
---|
| 45 | return
|
---|
| 46 | end
|
---|
| 47 |
|
---|
| 48 | DataOut=DataIn; %default
|
---|
| 49 |
|
---|
| 50 | %definition of the cos shape matrix filter
|
---|
| 51 | ix=[1/2-Param.TransformInput.FilterBoxSize_x/2:-1/2+Param.TransformInput.FilterBoxSize_x/2];%
|
---|
| 52 | iy=[1/2-Param.TransformInput.FilterBoxSize_y/2:-1/2+Param.TransformInput.FilterBoxSize_y/2];%
|
---|
| 53 | %del=np/3;
|
---|
| 54 | %fct=exp(-(ix/del).^2);
|
---|
| 55 | fct2_x=cos(ix/((Param.TransformInput.FilterBoxSize_x-1)/2)*pi/2);
|
---|
| 56 | fct2_y=cos(iy/((Param.TransformInput.FilterBoxSize_y-1)/2)*pi/2);
|
---|
| 57 | %Mfiltre=(ones(5,5)/5^2);
|
---|
| 58 | Mfiltre=fct2_y'*fct2_x;
|
---|
| 59 | Mfiltre=Mfiltre/(sum(sum(Mfiltre)));%normalize filter
|
---|
| 60 |
|
---|
| 61 | Atype=class(DataIn.A);% detect integer 8 or 16 bits
|
---|
| 62 | B=filter2(Mfiltre,DataIn.A);
|
---|
| 63 | B(B==0)=1; %set to 1 the zero values
|
---|
| 64 | C=(double(DataIn.A)-B)./B;
|
---|
| 65 | C=filter2(Mfiltre,C.*C);% take variance integrated in the filtering area
|
---|
| 66 | C=1000000*sqrt(C); % take the root and *10^6 to get an image with integer values (parts per million)
|
---|
| 67 | DataOut.A=feval(Atype,C);%transform to the initial image format
|
---|
| 68 |
|
---|
| 69 |
|
---|
[810] | 70 |
|
---|