1 | %'phys': transforms image (Unit='pixel') to real world (phys) coordinates using geometric calibration parameters. It acts if the input field contains the tag 'CoordTUnit' with value 'pixel' |
---|
2 | %------------------------------------------------------------------------ |
---|
3 | %%%% Use the general syntax for transform fields %%%% |
---|
4 | % OUTPUT: |
---|
5 | % DataOut: output field structure |
---|
6 | % |
---|
7 | %INPUT: |
---|
8 | % DataIn: first input field structure |
---|
9 | % XmlData: first input parameter structure, |
---|
10 | % .GeometryCalib: substructure of the calibration parameters |
---|
11 | % DataIn_1: optional second input field structure |
---|
12 | % XmlData_1: optional second input parameter structure |
---|
13 | % .GeometryCalib: substructure of the calibration parameters |
---|
14 | |
---|
15 | %======================================================================= |
---|
16 | % Copyright 2008-2024, LEGI UMR 5519 / CNRS UGA G-INP, Grenoble, France |
---|
17 | % http://www.legi.grenoble-inp.fr |
---|
18 | % Joel.Sommeria - Joel.Sommeria (A) univ-grenoble-alpes.fr |
---|
19 | % |
---|
20 | % This file is part of the toolbox UVMAT. |
---|
21 | % |
---|
22 | % UVMAT is free software; you can redistribute it and/or modify |
---|
23 | % it under the terms of the GNU General Public License as published |
---|
24 | % by the Free Software Foundation; either version 2 of the license, |
---|
25 | % or (at your option) any later version. |
---|
26 | % |
---|
27 | % UVMAT is distributed in the hope that it will be useful, |
---|
28 | % but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
29 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
30 | % GNU General Public License (see LICENSE.txt) for more details. |
---|
31 | %======================================================================= |
---|
32 | |
---|
33 | function DataOut=phys(DataIn,XmlData,DataIn_1,XmlData_1) |
---|
34 | %------------------------------------------------------------------------ |
---|
35 | |
---|
36 | % A FAIRE: 1- verifier si DataIn est une 'field structure'(.ListVarName'): |
---|
37 | % chercher ListVarAttribute, for each field (cell of variables): |
---|
38 | % .CoordType: 'phys' or 'px' (default==phys, no transform) |
---|
39 | % .scale_factor: =dt (to transform displacement into velocity) default=1 |
---|
40 | % .covariance: 'scalar', 'coord', 'D_i': covariant (like velocity), 'D^i': contravariant (like gradient), 'D^jD_i' (like strain tensor) |
---|
41 | % (default='coord' if .Role='coord_x,_y..., |
---|
42 | % 'D_i' if '.Role='vector_x,...', |
---|
43 | % 'scalar', else (thenno change except scale factor) |
---|
44 | |
---|
45 | DataOut=[]; |
---|
46 | DataOut_1=[]; %default second output field |
---|
47 | if isfield(DataIn,'Action') && isfield(DataIn.Action,'RUN') && isequal(DataIn.Action.RUN,0) |
---|
48 | if isfield(XmlData,'GeometryCalib')&& isfield(XmlData.GeometryCalib,'CoordUnit') |
---|
49 | DataOut.CoordUnit=XmlData.GeometryCalib.CoordUnit;% states that the output is in unit defined by GeometryCalib, then erased all projection objects with different units |
---|
50 | end |
---|
51 | return |
---|
52 | end |
---|
53 | |
---|
54 | %% analyse input and set default output |
---|
55 | DataOut=DataIn;%default first output field |
---|
56 | if nargin>=2 % nargin =nbre of input variables |
---|
57 | Calib{1}=[]; |
---|
58 | if isfield(XmlData,'GeometryCalib') |
---|
59 | Calib{1}=XmlData.GeometryCalib; |
---|
60 | end |
---|
61 | Slice{1}=Calib{1}; |
---|
62 | if isfield(XmlData,'Slice') |
---|
63 | Slice{1}=XmlData.Slice; |
---|
64 | end |
---|
65 | if nargin>=3 %two input fields |
---|
66 | DataOut_1=DataIn_1;%default second output field |
---|
67 | Calib{2}=Calib{1}; |
---|
68 | if nargin>=4 |
---|
69 | if isfield(XmlData_1,'GeometryCalib') |
---|
70 | Calib{2}=XmlData_1.GeometryCalib; |
---|
71 | end |
---|
72 | Slice{2}=Calib{2}; |
---|
73 | if isfield(XmlData_1,'Slice') |
---|
74 | Slice{2}=XmlData_1.Slice; |
---|
75 | end |
---|
76 | end |
---|
77 | end |
---|
78 | end |
---|
79 | |
---|
80 | %% get the z index defining the section plane |
---|
81 | ZIndex=1; |
---|
82 | if isfield(DataIn,'ZIndex')&&~isempty(DataIn.ZIndex)&&~isnan(DataIn.ZIndex) |
---|
83 | ZIndex=DataIn.ZIndex; |
---|
84 | end |
---|
85 | |
---|
86 | %% transform first field |
---|
87 | iscalar=0;% counter of scalar fields |
---|
88 | checktransform=0; |
---|
89 | if ~isempty(Calib{1}) |
---|
90 | if isfield(Calib{1},'CalibrationType')&& isfield(Calib{1},'CoordUnit') && isfield(DataIn,'CoordUnit')&& strcmp(DataIn.CoordUnit,'pixel') |
---|
91 | DataOut=phys_1(DataIn,Calib{1},Slice{1},ZIndex);% transform coordinates and velocity components |
---|
92 | %case of images or scalar: in case of two input fields, we need to project the transform on the same regular grid |
---|
93 | if isfield(DataIn,'A') && isfield(DataIn,'Coord_x') && ~isempty(DataIn.Coord_x) && isfield(DataIn,'Coord_y')&&... |
---|
94 | ~isempty(DataIn.Coord_y) && length(DataIn.A)>1 |
---|
95 | iscalar=1; |
---|
96 | A{1}=DataIn.A; |
---|
97 | end |
---|
98 | checktransform=1; |
---|
99 | end |
---|
100 | end |
---|
101 | |
---|
102 | %% document the selected plane position and angle if relevant |
---|
103 | if checktransform && isfield(Slice{1},'SliceCoord')&&size(Slice{1}.SliceCoord,1)>=ZIndex |
---|
104 | DataOut.PlaneCoord=Slice{1}.SliceCoord(ZIndex,:);% transfer the slice position corresponding to index ZIndex |
---|
105 | if isfield(Slice{1},'SliceAngle') % transfer the slice rotation angles |
---|
106 | if isequal(size(Slice{1}.SliceAngle,1),1)% case of a unique angle |
---|
107 | DataOut.PlaneAngle=Slice{1}.SliceAngle; |
---|
108 | else % case of multiple planes with different angles: select the plane with index ZIndex |
---|
109 | DataOut.PlaneAngle=Slice{1}.SliceAngle(ZIndex,:); |
---|
110 | end |
---|
111 | end |
---|
112 | end |
---|
113 | |
---|
114 | %% transform second field if relevant |
---|
115 | checktransform_1=0; |
---|
116 | if ~isempty(DataOut_1) |
---|
117 | if isfield(DataIn_1,'ZIndex') && ~isequal(DataIn_1.ZIndex,ZIndex) |
---|
118 | DataOut_1.Txt='different plane indices for the two input fields'; |
---|
119 | return |
---|
120 | end |
---|
121 | if isfield(Calib{2},'CalibrationType')&&isfield(Calib{2},'CoordUnit') && isfield(DataIn_1,'CoordUnit')&& strcmp(DataIn_1.CoordUnit,'pixel') |
---|
122 | DataOut_1=phys_1(DataOut_1,Calib{2},Slice{2},ZIndex); |
---|
123 | if isfield(Slice{2},'SliceCoord') |
---|
124 | if ~(isfield(Slice{2},'SliceCoord') && isequal(Slice{2}.SliceCoord,Slice{1}.SliceCoord)) |
---|
125 | DataOut_1.Txt='different plane positions for the two input fields'; |
---|
126 | return |
---|
127 | end |
---|
128 | DataOut_1.PlaneCoord=DataOut.PlaneCoord;% same plane position for the two input fields |
---|
129 | if isfield(Slice{1},'SliceAngle') |
---|
130 | if ~(isfield(Slice{2},'SliceAngle') && isequal(Slice{2}.SliceAngle,Slice{1}.SliceAngle)) |
---|
131 | DataOut_1.Txt='different plane angles for the two input fields'; |
---|
132 | return |
---|
133 | end |
---|
134 | DataOut_1.PlaneAngle=DataOut.PlaneAngle; % same plane angle for the two input fields |
---|
135 | end |
---|
136 | end |
---|
137 | if isfield(DataIn_1,'A')&&isfield(DataIn_1,'Coord_x')&&~isempty(DataIn_1.Coord_x) && isfield(DataIn_1,'Coord_y')&&... |
---|
138 | ~isempty(DataIn_1.Coord_y)&&length(DataIn_1.A)>1 |
---|
139 | iscalar=iscalar+1; |
---|
140 | % Calib{iscalar}=Calib{2}; |
---|
141 | A{iscalar}=DataIn_1.A; |
---|
142 | end |
---|
143 | checktransform_1=1; |
---|
144 | end |
---|
145 | end |
---|
146 | |
---|
147 | %% transform the scalar(s) or image(s) |
---|
148 | if checktransform && iscalar~=0 |
---|
149 | [A,Coord_x,Coord_y]=phys_ima(A,XmlData,ZIndex);%TODO : introduire interp2_uvmat ds phys_ima |
---|
150 | if iscalar==1 && ~isempty(DataOut_1) % case for which only the second field is a scalar |
---|
151 | DataOut_1.A=A{1}; |
---|
152 | DataOut_1.Coord_x=Coord_x; |
---|
153 | DataOut_1.Coord_y=Coord_y; |
---|
154 | else |
---|
155 | DataOut.A=A{1}; |
---|
156 | DataOut.Coord_x=Coord_x; |
---|
157 | DataOut.Coord_y=Coord_y; |
---|
158 | end |
---|
159 | if iscalar==2 |
---|
160 | DataOut_1.A=A{2}; |
---|
161 | DataOut_1.Coord_x=Coord_x; |
---|
162 | DataOut_1.Coord_y=Coord_y; |
---|
163 | end |
---|
164 | end |
---|
165 | |
---|
166 | % subtract fields |
---|
167 | if ~isempty(DataOut_1) |
---|
168 | DataOut=sub_field(DataOut,[],DataOut_1); |
---|
169 | end |
---|
170 | %------------------------------------------------ |
---|
171 | %--- transform a single field |
---|
172 | function DataOut=phys_1(Data,Calib,Slice,ZIndex) |
---|
173 | %------------------------------------------------ |
---|
174 | %% set default output |
---|
175 | DataOut=Data;%default |
---|
176 | DataOut.CoordUnit=Calib.CoordUnit;% the output coord unit is set by the calibration parameters |
---|
177 | |
---|
178 | %% transform X,Y coordinates for velocity fields (transform of an image or scalar done in phys_ima) |
---|
179 | if isfield(Data,'X') &&isfield(Data,'Y')&&~isempty(Data.X) && ~isempty(Data.Y) |
---|
180 | [DataOut.X,DataOut.Y]=phys_XYZ(Calib,Slice,Data.X,Data.Y,ZIndex); |
---|
181 | Dt=1; %default |
---|
182 | if isfield(Data,'dt')&&~isempty(Data.dt) |
---|
183 | Dt=Data.dt; |
---|
184 | end |
---|
185 | if isfield(Data,'Dt')&&~isempty(Data.Dt) |
---|
186 | Dt=Data.Dt; |
---|
187 | end |
---|
188 | if isfield(Data,'U')&&isfield(Data,'V')&&~isempty(Data.U) && ~isempty(Data.V) |
---|
189 | [XOut_1,YOut_1]=phys_XYZ(Calib,Slice,Data.X-Data.U/2,Data.Y-Data.V/2,ZIndex); |
---|
190 | [XOut_2,YOut_2]=phys_XYZ(Calib,Slice,Data.X+Data.U/2,Data.Y+Data.V/2,ZIndex); |
---|
191 | DataOut.U=(XOut_2-XOut_1)/Dt; |
---|
192 | DataOut.V=(YOut_2-YOut_1)/Dt; |
---|
193 | end |
---|
194 | end |
---|
195 | |
---|
196 | %% suppress tps |
---|
197 | list_tps={'Coord_tps' 'U_tps' 'V_tps' 'SubRange' 'NbSites'}; |
---|
198 | ind_remove=[]; |
---|
199 | for ilist=1:numel(list_tps) |
---|
200 | ind_tps=find(strcmp(list_tps{ilist},Data.ListVarName)); |
---|
201 | if ~isempty(ind_tps) |
---|
202 | ind_remove=[ind_remove ind_tps]; |
---|
203 | DataOut=rmfield(DataOut,list_tps{ilist}); |
---|
204 | end |
---|
205 | end |
---|
206 | if isfield(DataOut,'VarAttribute') && numel(DataOut.VarAttribute)>=3 && isfield(DataOut.VarAttribute{3},'VarIndex_tps') |
---|
207 | DataOut.VarAttribute{3}=rmfield(DataOut.VarAttribute{3},'VarIndex_tps'); |
---|
208 | end |
---|
209 | if isfield(DataOut,'VarAttribute')&& numel(DataOut.VarAttribute)>=4 && isfield(DataOut.VarAttribute{4},'VarIndex_tps') |
---|
210 | DataOut.VarAttribute{4}=rmfield(DataOut.VarAttribute{4},'VarIndex_tps'); |
---|
211 | end |
---|
212 | if ~isempty(ind_remove) |
---|
213 | DataOut.ListVarName(ind_remove)=[]; |
---|
214 | DataOut.VarDimName(ind_remove)=[]; |
---|
215 | DataOut.VarAttribute(ind_remove)=[]; |
---|
216 | end |
---|
217 | |
---|
218 | %% transform of spatial derivatives: TODO check the case with plane angles |
---|
219 | if isfield(Data,'X') && ~isempty(Data.X) && isfield(Data,'DjUi') && ~isempty(Data.DjUi) |
---|
220 | % estimate the Jacobian matrix DXpx/DXphys |
---|
221 | for ip=1:length(Data.X) |
---|
222 | [Xp1,Yp1]=phys_XYZ(Calib,Slice,Data.X(ip)+0.5,Data.Y(ip),ZIndex); |
---|
223 | [Xm1,Ym1]=phys_XYZ(Calib,Slice,Data.X(ip)-0.5,Data.Y(ip),ZIndex); |
---|
224 | [Xp2,Yp2]=phys_XYZ(Calib,Slice,Data.X(ip),Data.Y(ip)+0.5,ZIndex); |
---|
225 | [Xm2,Ym2]=phys_XYZ(Calib,Slice,Data.X(ip),Data.Y(ip)-0.5,ZIndex); |
---|
226 | %Jacobian matrix DXpphys/DXpx |
---|
227 | DjXi(1,1)=(Xp1-Xm1); |
---|
228 | DjXi(2,1)=(Yp1-Ym1); |
---|
229 | DjXi(1,2)=(Xp2-Xm2); |
---|
230 | DjXi(2,2)=(Yp2-Ym2); |
---|
231 | DjUi(:,:)=Data.DjUi(ip,:,:); |
---|
232 | DjUi=(DjXi*DjUi')/DjXi;% =J-1*M*J , curvature effects (derivatives of J) neglected |
---|
233 | DataOut.DjUi(ip,:,:)=DjUi'; |
---|
234 | end |
---|
235 | DataOut.DjUi = DataOut.DjUi/Dt; % min(Data.DjUi(:,1,1))=DUDX |
---|
236 | end |
---|
237 | |
---|
238 | |
---|
239 | %%%%%%%%%%%%%%%%%%%% |
---|
240 | |
---|