source: trunk/src/transform_field/phys.m @ 868

Last change on this file since 868 was 866, checked in by sommeria, 10 years ago

stereo_civ_updated

File size: 9.9 KB
Line 
1%'phys': transforms image (Unit='pixel') to real world (phys) coordinates using geometric calibration parameters.  It acts if the input field contains the tag 'CoordTUnit' with value 'pixel'
2%------------------------------------------------------------------------
3%%%%  Use the general syntax for transform fields %%%%
4% OUTPUT:
5% DataOut:   output field structure
6%
7%INPUT:
8% DataIn:  first input field structure
9% XmlData: first input parameter structure,
10%        .GeometryCalib: substructure of the calibration parameters
11% DataIn_1: optional second input field structure
12% XmlData_1: optional second input parameter structure
13%         .GeometryCalib: substructure of the calibration parameters
14
15%=======================================================================
16% Copyright 2008-2014, LEGI UMR 5519 / CNRS UJF G-INP, Grenoble, France
17%   http://www.legi.grenoble-inp.fr
18%   Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr
19%
20%     This file is part of the toolbox UVMAT.
21%
22%     UVMAT is free software; you can redistribute it and/or modify
23%     it under the terms of the GNU General Public License as published
24%     by the Free Software Foundation; either version 2 of the license,
25%     or (at your option) any later version.
26%
27%     UVMAT is distributed in the hope that it will be useful,
28%     but WITHOUT ANY WARRANTY; without even the implied warranty of
29%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
30%     GNU General Public License (see LICENSE.txt) for more details.
31%=======================================================================
32
33function DataOut=phys(DataIn,XmlData,DataIn_1,XmlData_1)
34%------------------------------------------------------------------------
35
36% A FAIRE: 1- verifier si DataIn est une 'field structure'(.ListVarName'):
37% chercher ListVarAttribute, for each field (cell of variables):
38%   .CoordType: 'phys' or 'px'   (default==phys, no transform)
39%   .scale_factor: =dt (to transform displacement into velocity) default=1
40%   .covariance: 'scalar', 'coord', 'D_i': covariant (like velocity), 'D^i': contravariant (like gradient), 'D^jD_i' (like strain tensor)
41%   (default='coord' if .Role='coord_x,_y...,
42%            'D_i' if '.Role='vector_x,...',
43%              'scalar', else (thenno change except scale factor)
44
45DataOut=[];
46DataOut_1=[]; %default second  output field
47if isfield(DataIn,'Action') && isfield(DataIn.Action,'RUN') && isequal(DataIn.Action.RUN,0)
48    if isfield(XmlData,'GeometryCalib')&& isfield(XmlData.GeometryCalib,'CoordUnit')
49        DataOut.CoordUnit=XmlData.GeometryCalib.CoordUnit;% states that the output is in unit defined by GeometryCalib, then erased all projection objects with different units
50    end
51    return
52end
53
54%% analyse input and set default output
55DataOut=DataIn;%default first output field
56if nargin>=2 % nargin =nbre of input variables
57    if isfield(XmlData,'GeometryCalib')
58        Calib{1}=XmlData.GeometryCalib;
59    else
60        Calib{1}=[];
61    end
62    if nargin>=3  %two input fields
63        DataOut_1=DataIn_1;%default second output field
64        if nargin>=4 && isfield(XmlData_1,'GeometryCalib')
65            Calib{2}=XmlData_1.GeometryCalib;
66        else
67            Calib{2}=Calib{1};
68        end
69    end
70end
71
72%% get the z index defining the section plane
73if isfield(DataIn,'ZIndex')&&~isempty(DataIn.ZIndex)&&~isnan(DataIn.ZIndex)
74    ZIndex=DataIn.ZIndex;
75else
76    ZIndex=1;
77end
78
79%% transform first field
80iscalar=0;% counter of scalar fields
81if  ~isempty(Calib{1})
82    if ~isfield(Calib{1},'CalibrationType')||~isfield(Calib{1},'CoordUnit')
83        return %bad calib parameter input
84    end
85    if ~(isfield(DataIn,'CoordUnit')&& strcmp(DataIn.CoordUnit,'pixel'))
86        return % transform only fields in pixel coordinates
87    end
88    DataOut=phys_1(DataIn,Calib{1},ZIndex);% transform coordiantes and velocity components
89    %case of images or scalar: in case of two input fields, we need to project the transform  on the same regular grid
90    if isfield(DataIn,'A') && isfield(DataIn,'Coord_x') && ~isempty(DataIn.Coord_x) && isfield(DataIn,'Coord_y')&&...
91                                           ~isempty(DataIn.Coord_y) && length(DataIn.A)>1
92        iscalar=1;
93        A{1}=DataIn.A;
94    end
95end
96
97%% document the selected  plane position and angle if relevant
98if isfield(Calib{1},'SliceCoord')&&size(Calib{1}.SliceCoord,1)>=ZIndex
99    DataOut.PlaneCoord=Calib{1}.SliceCoord(ZIndex,:);% transfer the slice position corresponding to index ZIndex
100    if isfield(Calib{1},'SliceAngle') % transfer the slice rotation angles
101        if isequal(size(Calib{1}.SliceAngle,1),1)% case of a unique angle
102            DataOut.PlaneAngle=Calib{1}.SliceAngle;
103        else  % case of multiple planes with different angles: select the plane with index ZIndex
104            DataOut.PlaneAngle=Calib{1}.SliceAngle(ZIndex,:);
105        end
106    end
107end
108
109%% transform second field if relevant
110if ~isempty(DataOut_1)
111    if isfield(DataIn_1,'ZIndex') && ~isequal(DataIn_1.ZIndex,ZIndex)
112        DataOut_1.Txt='different plane indices for the two input fields';
113        return
114    end
115    if ~isfield(Calib{2},'CalibrationType')||~isfield(Calib{2},'CoordUnit')
116        return %bad calib parameter input
117    end
118    if (isfield(DataIn_1,'CoordUnit')&& strcmp(DataIn_1.CoordUnit,'pixel'))
119%         return % transform only fields in pixel coordinates
120%     end
121    DataOut_1=phys_1(DataOut_1,Calib{2},ZIndex);
122    end
123    if isfield(Calib{1},'SliceCoord')
124        if ~(isfield(Calib{2},'SliceCoord') && isequal(Calib{2}.SliceCoord,Calib{1}.SliceCoord))
125            DataOut_1.Txt='different plane positions for the two input fields';
126            return
127        end       
128        DataOut_1.PlaneCoord=DataOut.PlaneCoord;% same plane position for the two input fields
129        if isfield(Calib{1},'SliceAngle')
130            if ~(isfield(Calib{2},'SliceAngle') && isequal(Calib{2}.SliceAngle,Calib{1}.SliceAngle))
131                DataOut_1.Txt='different plane angles for the two input fields';
132                return
133            end
134            DataOut_1.PlaneAngle=DataOut.PlaneAngle; % same plane angle for the two input fields
135        end
136    end
137    if isfield(DataIn_1,'A')&&isfield(DataIn_1,'Coord_x')&&~isempty(DataIn_1.Coord_x) && isfield(DataIn_1,'Coord_y')&&...
138            ~isempty(DataIn_1.Coord_y)&&length(DataIn_1.A)>1
139        iscalar=iscalar+1;
140        Calib{iscalar}=Calib{2};
141        A{iscalar}=DataIn_1.A;
142    end
143end
144
145%% transform the scalar(s) or image(s)
146if iscalar~=0
147    [A,Coord_x,Coord_y]=phys_ima(A,XmlData,ZIndex);%TODO : introduire interp2_uvmat ds phys_ima
148    if iscalar==1 && ~isempty(DataOut_1) % case for which only the second field is a scalar
149         DataOut_1.A=A{1};
150         DataOut_1.Coord_x=Coord_x;
151         DataOut_1.Coord_y=Coord_y;
152    else
153        DataOut.A=A{1};
154        DataOut.Coord_x=Coord_x;
155        DataOut.Coord_y=Coord_y;
156    end
157    if iscalar==2
158        DataOut_1.A=A{2};
159        DataOut_1.Coord_x=Coord_x;
160        DataOut_1.Coord_y=Coord_y;
161    end
162end
163
164% subtract fields
165if ~isempty(DataOut_1)
166    DataOut=sub_field(DataOut,[],DataOut_1);
167end
168%------------------------------------------------
169%--- transform a single field
170function DataOut=phys_1(Data,Calib,ZIndex)
171%------------------------------------------------
172%% set default output
173DataOut=Data;%default
174DataOut.CoordUnit=Calib.CoordUnit;% the output coord unit is set by the calibration parameters
175
176%% transform  X,Y coordinates for velocity fields (transform of an image or scalar done in phys_ima)
177if isfield(Data,'X') &&isfield(Data,'Y')&&~isempty(Data.X) && ~isempty(Data.Y)
178  [DataOut.X,DataOut.Y]=phys_XYZ(Calib,Data.X,Data.Y,ZIndex);
179    Dt=1; %default
180    if isfield(Data,'dt')&&~isempty(Data.dt)
181        Dt=Data.dt;
182    end
183    if isfield(Data,'Dt')&&~isempty(Data.Dt)
184        Dt=Data.Dt;
185    end
186    if isfield(Data,'U')&&isfield(Data,'V')&&~isempty(Data.U) && ~isempty(Data.V)
187        [XOut_1,YOut_1]=phys_XYZ(Calib,Data.X-Data.U/2,Data.Y-Data.V/2,ZIndex);
188        [XOut_2,YOut_2]=phys_XYZ(Calib,Data.X+Data.U/2,Data.Y+Data.V/2,ZIndex);
189        DataOut.U=(XOut_2-XOut_1)/Dt;
190        DataOut.V=(YOut_2-YOut_1)/Dt;
191    end
192%     if ~strcmp(Calib.CalibrationType,'rescale') && isfield(Data,'X_tps') && isfield(Data,'Y_tps')
193%         [DataOut.X_tps,DataOut.Y_tps]=phys_XYZ(Calib,Data.X,Data.Y,ZIndex);
194%     end
195end
196
197%% suppress tps
198list_tps={'Coord_tps'  'U_tps'  'V_tps'  'SubRange'  'NbSites'};
199ind_remove=[];
200for ilist=1:numel(list_tps)
201    ind_tps=find(strcmp(list_tps{ilist},Data.ListVarName));
202    if ~isempty(ind_tps)
203        ind_remove=[ind_remove ind_tps];
204        DataOut=rmfield(DataOut,list_tps{ilist});
205    end
206end
207if isfield(DataOut,'VarAttribute') && numel(DataOut.VarAttribute)>=3 && isfield(DataOut.VarAttribute{3},'VarIndex_tps')
208    DataOut.VarAttribute{3}=rmfield(DataOut.VarAttribute{3},'VarIndex_tps');
209end
210if isfield(DataOut,'VarAttribute')&& numel(DataOut.VarAttribute)>=4 && isfield(DataOut.VarAttribute{4},'VarIndex_tps')
211    DataOut.VarAttribute{4}=rmfield(DataOut.VarAttribute{4},'VarIndex_tps');
212end
213if ~isempty(ind_remove)
214    DataOut.ListVarName(ind_remove)=[];
215    DataOut.VarDimName(ind_remove)=[];
216    DataOut.VarAttribute(ind_remove)=[];
217end
218   
219%% transform of spatial derivatives: TODO check the case with plane angles
220if isfield(Data,'X') && ~isempty(Data.X) && isfield(Data,'DjUi') && ~isempty(Data.DjUi)
221    % estimate the Jacobian matrix DXpx/DXphys
222    for ip=1:length(Data.X)
223        [Xp1,Yp1]=phys_XYZ(Calib,Data.X(ip)+0.5,Data.Y(ip),ZIndex);
224        [Xm1,Ym1]=phys_XYZ(Calib,Data.X(ip)-0.5,Data.Y(ip),ZIndex);
225        [Xp2,Yp2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)+0.5,ZIndex);
226        [Xm2,Ym2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)-0.5,ZIndex);
227        %Jacobian matrix DXpphys/DXpx
228        DjXi(1,1)=(Xp1-Xm1);
229        DjXi(2,1)=(Yp1-Ym1);
230        DjXi(1,2)=(Xp2-Xm2);
231        DjXi(2,2)=(Yp2-Ym2);
232        DjUi(:,:)=Data.DjUi(ip,:,:);
233        DjUi=(DjXi*DjUi')/DjXi;% =J-1*M*J , curvature effects (derivatives of J) neglected
234        DataOut.DjUi(ip,:,:)=DjUi';
235    end
236    DataOut.DjUi =  DataOut.DjUi/Dt;   %     min(Data.DjUi(:,1,1))=DUDX
237end
238
239
240%%%%%%%%%%%%%%%%%%%%
241
Note: See TracBrowser for help on using the repository browser.