%'phys': transforms image (px) to real world (phys) coordinates using geometric calibration parameters % DataOut=phys(Data,CalibData) , transform one input field % [DataOut,DataOut_1]=phys(Data,CalibData,Data_1,CalibData_1), transform two input fields % OUTPUT: % DataOut: structure representing the modified field % DataOut_1: structure representing the second modified field %INPUT: % Data: structure of input data % with fields .A (image or scalar matrix), AX, AY % .X,.Y,.U,.V, .DjUi % .ZIndex: index of plane in multilevel case % .CoordType='phys' or 'px', The function ACTS ONLY IF .CoordType='px' % CalibData: structure containing calibration parameters or a subtree Calib.GeometryCalib =calibration data (tsai parameters) function [DataOut,DataOut_1]=phys(varargin) % A FAIRE: 1- verifier si DataIn est une 'field structure'(.ListVarName'): % chercher ListVarAttribute, for each field (cell of variables): % .CoordType: 'phys' or 'px' (default==phys, no transform) % .scale_factor: =dt (to transform displacement into velocity) default=1 % .covariance: 'scalar', 'coord', 'D_i': covariant (like velocity), 'D^i': contravariant (like gradient), 'D^jD_i' (like strain tensor) % (default='coord' if .Role='coord_x,_y..., % 'D_i' if '.Role='vector_x,...', % 'scalar', else (thenno change except scale factor) Calib{1}=[]; if nargin==2||nargin==4 % nargin =nbre of input variables Data=varargin{1}; DataOut=Data;%default DataOut_1=[];%default CalibData=varargin{2}; if isfield(CalibData,'GeometryCalib') Calib{1}=CalibData.GeometryCalib; end Calib{2}=Calib{1}; else DataOut.Txt='wrong input: need two or four structures'; end test_1=0; if nargin==4 test_1=1; Data_1=varargin{3}; DataOut_1=Data_1;%default CalibData_1=varargin{4}; if isfield(CalibData_1,'GeometryCalib') Calib{2}=CalibData_1.GeometryCalib; end end iscalar=0; if ~isempty(Calib{1}) DataOut=phys_1(Data,Calib{1}); %case of images or scalar: in case of two input fields, we need to project the transform of on the same regular grid if isfield(Data,'A') && isfield(Data,'AX') && ~isempty(Data.AX) && isfield(Data,'AY')&&... ~isempty(Data.AY) && length(Data.A)>1 iscalar=1; A{1}=Data.A; end end %transform of X,Y coordinates for vector fields if isfield(Data,'ZIndex')&&~isempty(Data.ZIndex)&&~isnan(Data.ZIndex) ZIndex=Data.ZIndex; else ZIndex=1; end if test_1 DataOut_1=phys_1(Data_1,Calib{2}); if isfield(Data_1,'A')&&isfield(Data_1,'AX')&&~isempty(Data_1.AX) && isfield(Data_1,'AY')&&... ~isempty(Data_1.AY)&&length(Data_1.A)>1 iscalar=iscalar+1; Calib{iscalar}=Calib{2}; A{iscalar}=Data_1.A; if isfield(Data_1,'ZIndex') && ~isequal(Data_1.ZIndex,ZIndex) DataOut.Txt='inconsistent plane indexes in the two input fields'; end if iscalar==1% case for which only the second field is a scalar [A,AX,AY]=phys_Ima(A,Calib,ZIndex); DataOut_1.A=A{1}; DataOut_1.AX=AX; DataOut_1.AY=AY; return end end end if iscalar~=0 [A,AX,AY]=phys_Ima(A,Calib,ZIndex);%TODO : introduire interp2_uvmat ds phys_ima DataOut.A=A{1}; DataOut.AX=AX; DataOut.AY=AY; if iscalar==2 DataOut_1.A=A{2}; DataOut_1.AX=AX; DataOut_1.AY=AY; end end %------------------------------------------------ function DataOut=phys_1(Data,Calib) % for icell=1:length(Data) DataOut=Data;%default % DataOut.CoordUnit=Calib.CoordUnit; %put flag for physical coordinates if isfield(Calib,'SliceCoord') DataOut.PlaneCoord=Calib.SliceCoord;%to generalise for any plane end % The transform ACTS ONLY IF .CoordType='px'and Calib defined if isfield(Data,'CoordUnit')%&& isequal(Data.CoordType,'px')&& ~isempty(Calib) if isfield(Calib,'CoordUnit') DataOut.CoordUnit=Calib.CoordUnit; else DataOut.CoordUnit='cm'; %default end DataOut.TimeUnit='s'; %transform of X,Y coordinates for vector fields if isfield(Data,'ZIndex') && ~isempty(Data.ZIndex)&&~isnan(Data.ZIndex) Z=Data.ZIndex; else Z=0; end if isfield(Data,'X') &&isfield(Data,'Y')&&~isempty(Data.X) && ~isempty(Data.Y) [DataOut.X,DataOut.Y,DataOut.Z]=phys_XYZ(Calib,Data.X,Data.Y,Z); if isfield(Data,'U')&&isfield(Data,'V')&&~isempty(Data.U) && ~isempty(Data.V)&& isfield(Data,'dt') if ~isempty(Data.dt) [XOut_1,YOut_1]=phys_XYZ(Calib,Data.X-Data.U/2,Data.Y-Data.V/2,Z); [XOut_2,YOut_2]=phys_XYZ(Calib,Data.X+Data.U/2,Data.Y+Data.V/2,Z); DataOut.U=(XOut_2-XOut_1)/Data.dt; DataOut.V=(YOut_2-YOut_1)/Data.dt; end end end %transform of an image or scalar: done in phys_ima %transform of spatial derivatives if isfield(Data,'X') && ~isempty(Data.X) && isfield(Data,'DjUi') && ~isempty(Data.DjUi)... && isfield(Data,'dt') if ~isempty(Data.dt) % estimate the Jacobian matrix DXpx/DXphys for ip=1:length(Data.X) [Xp1,Yp1]=phys_XYZ(Calib,Data.X(ip)+0.5,Data.Y(ip),Z); [Xm1,Ym1]=phys_XYZ(Calib,Data.X(ip)-0.5,Data.Y(ip),Z); [Xp2,Yp2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)+0.5,Z); [Xm2,Ym2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)-0.5,Z); %Jacobian matrix DXpphys/DXpx DjXi(1,1)=(Xp1-Xm1); DjXi(2,1)=(Yp1-Ym1); DjXi(1,2)=(Xp2-Xm2); DjXi(2,2)=(Yp2-Ym2); DjUi(:,:)=Data.DjUi(ip,:,:); DjUi=(DjXi*DjUi')/DjXi;% =J-1*M*J , curvature effects (derivatives of J) neglected DataOut.DjUi(ip,:,:)=DjUi'; end DataOut.DjUi = DataOut.DjUi/Data.dt; % min(Data.DjUi(:,1,1))=DUDX end end end %%%%%%%%%%%%%%%%%%%% function [A_out,Rangx,Rangy]=phys_Ima(A,CalibIn,ZIndex) xcorner=[]; ycorner=[]; npx=[]; npy=[]; dx=ones(1,length(A)); dy=ones(1,length(A)); for icell=1:length(A) siz=size(A{icell}); npx=[npx siz(2)]; npy=[npy siz(1)]; Calib=CalibIn{icell}; xima=[0.5 siz(2)-0.5 0.5 siz(2)-0.5];%image coordinates of corners yima=[0.5 0.5 siz(1)-0.5 siz(1)-0.5]; [xcorner_new,ycorner_new]=phys_XYZ(Calib,xima,yima,ZIndex);%corresponding physical coordinates dx(icell)=(max(xcorner_new)-min(xcorner_new))/(siz(2)-1); dy(icell)=(max(ycorner_new)-min(ycorner_new))/(siz(1)-1); xcorner=[xcorner xcorner_new]; ycorner=[ycorner ycorner_new]; end Rangx(1)=min(xcorner); Rangx(2)=max(xcorner); Rangy(2)=min(ycorner); Rangy(1)=max(ycorner); test_multi=(max(npx)~=min(npx)) || (max(npy)~=min(npy)); %different image lengths npX=1+round((Rangx(2)-Rangx(1))/min(dx));% nbre of pixels in the new image (use the finest resolution min(dx) in the set of images) npY=1+round((Rangy(1)-Rangy(2))/min(dy)); x=linspace(Rangx(1),Rangx(2),npX); y=linspace(Rangy(1),Rangy(2),npY); [X,Y]=meshgrid(x,y);%grid in physical coordiantes vec_B=[]; A_out={}; for icell=1:length(A) Calib=CalibIn{icell}; if isfield(Calib,'R') || isfield(Calib,'kc')|| test_multi ||~isequal(Calib,CalibIn{1})% the image needs to be interpolated to the new coordinates zphys=0; %default if isfield(Calib,'SliceCoord') %.Z= index of plane SliceCoord=Calib.SliceCoord(ZIndex,:); zphys=SliceCoord(3); %to generalize for non-parallel planes if isfield(Calib,'InterfaceCoord') && isfield(Calib,'RefractionIndex') H=Calib.InterfaceCoord(3); if H>zphys zphys=H-(H-zphys)/Calib.RefractionIndex; %corrected z (virtual object) end end end [XIMA,YIMA]=px_XYZ(CalibIn{icell},X,Y,zphys);% image coordinates for each point in the real space grid XIMA=reshape(round(XIMA),1,npX*npY);%indices reorganized in 'line' YIMA=reshape(round(YIMA),1,npX*npY); flagin=XIMA>=1 & XIMA<=npx(icell) & YIMA >=1 & YIMA<=npy(icell);%flagin=1 inside the original image testuint8=isa(A{icell},'uint8'); testuint16=isa(A{icell},'uint16'); if numel(siz)==2 %(B/W images) vec_A=reshape(A{icell},1,npx(icell)*npy(icell));%put the original image in line ind_in=find(flagin); ind_out=find(~flagin); ICOMB=((XIMA-1)*npy(icell)+(npy(icell)+1-YIMA)); ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A vec_B(ind_in)=vec_A(ICOMB); vec_B(ind_out)=zeros(size(ind_out)); A_out{icell}=reshape(vec_B,npY,npX);%new image in real coordinates elseif numel(siz)==3 for icolor=1:siz(3) vec_A=reshape(A{icell}(:,:,icolor),1,npx*npy);%put the original image in line ind_in=find(flagin); ind_out=find(~flagin); ICOMB=((XIMA-1)*npy+(npy+1-YIMA)); ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A vec_B(ind_in)=vec_A(ICOMB); vec_B(ind_out)=zeros(size(ind_out)); A_out{icell}(:,:,icolor)=reshape(vec_B,npy,npx);%new image in real coordinates end end if testuint8 A_out{icell}=uint8(A_out{icell}); end if testuint16 A_out{icell}=uint16(A_out{icell}); end else% A_out{icell}=A{icell};%no transform Rangx=[0.5 npx-0.5];%image coordiantes of corners Rangy=[npy-0.5 0.5]; [Rangx]=phys_XYZ(Calib,Rangx,[0.5 0.5],ZIndex);%case of translations without rotation and quadratic deformation [xx,Rangy]=phys_XYZ(Calib,[0.5 0.5],Rangy,ZIndex); end end %------------------------------------------------------------------------ %'phys_XYZ':transforms image (px) to real world (phys) coordinates using geometric calibration parameters % function [Xphys,Yphys]=phys_XYZ(Calib,X,Y,Z) % %OUTPUT: % %INPUT: %Z: index of plane function [Xphys,Yphys,Zphys]=phys_XYZ(Calib,X,Y,Z) %------------------------------------------------------------------------ if exist('Z','var')&& isequal(Z,round(Z))&& Z>0 && isfield(Calib,'SliceCoord')&&length(Calib.SliceCoord)>=Z Zindex=Z; Zphys=Calib.SliceCoord(Zindex,3);%GENERALISER AUX CAS AVEC ANGLE if isfield(Calib,'InterfaceCoord') && isfield(Calib,'RefractionIndex') H=Calib.InterfaceCoord(3); if H>Zphys Zphys=H-(H-Zphys)/Calib.RefractionIndex; %corrected z (virtual object) end end else Zphys=0; end if ~exist('X','var')||~exist('Y','var') Xphys=[]; Yphys=[];%default return end %coordinate transform if ~isfield(Calib,'fx_fy') Calib.fx_fy=[1 1]; end if ~isfield(Calib,'Tx_Ty_Tz') Calib.Tx_Ty_Tz=[0 0 1]; end if ~isfield(Calib,'Cx_Cy') Calib.Cx_Cy=[0 0]; end if ~isfield(Calib,'kc') Calib.kc=0; end if isfield(Calib,'R') R=(Calib.R)'; Tx=Calib.Tx_Ty_Tz(1); Ty=Calib.Tx_Ty_Tz(2); Tz=Calib.Tx_Ty_Tz(3); f=Calib.fx_fy(1);%dpy=1; sx=1 dpx=Calib.fx_fy(2)/Calib.fx_fy(1); Dx=R(5)*R(7)-R(4)*R(8); Dy=R(1)*R(8)-R(2)*R(7); D0=f*(R(2)*R(4)-R(1)*R(5)); Z11=R(6)*R(8)-R(5)*R(9); Z12=R(2)*R(9)-R(3)*R(8); Z21=R(4)*R(9)-R(6)*R(7); Z22=R(3)*R(7)-R(1)*R(9); Zx0=R(3)*R(5)-R(2)*R(6); Zy0=R(1)*R(6)-R(3)*R(4); A11=R(8)*Ty-R(5)*Tz+Z11*Zphys; A12=R(2)*Tz-R(8)*Tx+Z12*Zphys; A21=-R(7)*Ty+R(4)*Tz+Z21*Zphys; A22=-R(1)*Tz+R(7)*Tx+Z22*Zphys; X0=f*(R(5)*Tx-R(2)*Ty+Zx0*Zphys); Y0=f*(-R(4)*Tx+R(1)*Ty+Zy0*Zphys); %px to camera: Xd=dpx*(X-Calib.Cx_Cy(1)); % sensor coordinates Yd=(Y-Calib.Cx_Cy(2)); dist_fact=1+Calib.kc*(Xd.*Xd+Yd.*Yd)/(f*f); %distortion factor Xu=Xd./dist_fact;%undistorted sensor coordinates Yu=Yd./dist_fact; denom=Dx*Xu+Dy*Yu+D0; % denom2=denom.*denom; Xphys=(A11.*Xu+A12.*Yu+X0)./denom;%world coordinates Yphys=(A21.*Xu+A22.*Yu+Y0)./denom; % Xd=(X-Calib.Cx_Cy(1))/Calib.fx_fy(1); % sensor coordinates % Yd=(Y-Calib.Cx_Cy(2))/Calib.fx_fy(2); % dist_fact=1+Calib.kc*(Xd.*Xd+Yd.*Yd); %distortion factor % Xu=Xd./dist_fact;%undistorted sensor coordinates % Yu=Yd./dist_fact; % A11=R(7)*Xu-R(1); % A12=R(8)*Xu-R(2); % A21=R(7)*Yu-R(4); % A22=R(8)*Yu-R(5); % B1=(R(3)-R(9)*Xu)*Zphys-Tz*Xu+Tx; % B2=(R(6)-R(9)*Yu)*Zphys-Tz*Yu+Ty; % deter=A12.*A21-A11.*A22; % Xphys=(A21.*B1-A11.*B2)./deter; % Yphys=(-A22.*B1+A12.*B2)./deter; else Xphys=-Calib.Tx_Ty_Tz(1)+X/Calib.fx_fy(1); Yphys=-Calib.Tx_Ty_Tz(2)+Y/Calib.fx_fy(2); end %'px_XYZ': transform phys coordinates to image coordinates (px) % % OUPUT: % X,Y: array of coordinates in the image cooresponding to the input physical positions % (origin at lower leftcorner, unit=pixel) % INPUT: % Calib: structure containing the calibration parameters (read from the ImaDoc .xml file) % Xphys, Yphys: array of x,y physical coordinates % [Zphys]: corresponding array of z physical coordinates (0 by default)