1 | %'phys': transforms image (px) to real world (phys) coordinates using geometric calibration parameters
|
---|
2 | % DataOut=phys(Data,CalibData) , transform one input field
|
---|
3 | % [DataOut,DataOut_1]=phys(Data,CalibData,Data_1,CalibData_1), transform two input fields
|
---|
4 |
|
---|
5 | % OUTPUT:
|
---|
6 | % DataOut: structure representing the modified field
|
---|
7 | % DataOut_1: structure representing the second modified field
|
---|
8 |
|
---|
9 | %INPUT:
|
---|
10 | % Data: structure of input data
|
---|
11 | % with fields .A (image or scalar matrix), AX, AY
|
---|
12 | % .X,.Y,.U,.V, .DjUi
|
---|
13 | % .ZIndex: index of plane in multilevel case
|
---|
14 | % .CoordType='phys' or 'px', The function ACTS ONLY IF .CoordType='px'
|
---|
15 | % CalibData: structure containing calibration parameters or a subtree Calib.GeometryCalib =calibration data (tsai parameters)
|
---|
16 |
|
---|
17 | function [DataOut,DataOut_1]=phys(varargin)
|
---|
18 | % A FAIRE: 1- verifier si DataIn est une 'field structure'(.ListVarName'):
|
---|
19 | % chercher ListVarAttribute, for each field (cell of variables):
|
---|
20 | % .CoordType: 'phys' or 'px' (default==phys, no transform)
|
---|
21 | % .scale_factor: =dt (to transform displacement into velocity) default=1
|
---|
22 | % .covariance: 'scalar', 'coord', 'D_i': covariant (like velocity), 'D^i': contravariant (like gradient), 'D^jD_i' (like strain tensor)
|
---|
23 | % (default='coord' if .Role='coord_x,_y...,
|
---|
24 | % 'D_i' if '.Role='vector_x,...',
|
---|
25 | % 'scalar', else (thenno change except scale factor)
|
---|
26 | Calib{1}=[];
|
---|
27 | if nargin==2||nargin==4 % nargin =nbre of input variables
|
---|
28 | Data=varargin{1};
|
---|
29 | DataOut=Data;%default
|
---|
30 | DataOut_1=[];%default
|
---|
31 | CalibData=varargin{2};
|
---|
32 | if isfield(CalibData,'GeometryCalib')
|
---|
33 | Calib{1}=CalibData.GeometryCalib;
|
---|
34 | end
|
---|
35 | Calib{2}=Calib{1};
|
---|
36 | else
|
---|
37 | DataOut.Txt='wrong input: need two or four structures';
|
---|
38 | end
|
---|
39 | test_1=0;
|
---|
40 | if nargin==4
|
---|
41 | test_1=1;
|
---|
42 | Data_1=varargin{3};
|
---|
43 | DataOut_1=Data_1;%default
|
---|
44 | CalibData_1=varargin{4};
|
---|
45 | if isfield(CalibData_1,'GeometryCalib')
|
---|
46 | Calib{2}=CalibData_1.GeometryCalib;
|
---|
47 | end
|
---|
48 | end
|
---|
49 | iscalar=0;
|
---|
50 | if ~isempty(Calib{1})
|
---|
51 | DataOut=phys_1(Data,Calib{1});
|
---|
52 | %case of images or scalar: in case of two input fields, we need to project the transform of on the same regular grid
|
---|
53 | if isfield(Data,'A') && isfield(Data,'AX') && ~isempty(Data.AX) && isfield(Data,'AY')&&...
|
---|
54 | ~isempty(Data.AY) && length(Data.A)>1
|
---|
55 | iscalar=1;
|
---|
56 | A{1}=Data.A;
|
---|
57 | end
|
---|
58 | end
|
---|
59 | %transform of X,Y coordinates for vector fields
|
---|
60 | if isfield(Data,'ZIndex')&&~isempty(Data.ZIndex)&&~isnan(Data.ZIndex)
|
---|
61 | ZIndex=Data.ZIndex;
|
---|
62 | else
|
---|
63 | ZIndex=1;
|
---|
64 | end
|
---|
65 | if test_1
|
---|
66 | DataOut_1=phys_1(Data_1,Calib{2});
|
---|
67 | if isfield(Data_1,'A')&&isfield(Data_1,'AX')&&~isempty(Data_1.AX) && isfield(Data_1,'AY')&&...
|
---|
68 | ~isempty(Data_1.AY)&&length(Data_1.A)>1
|
---|
69 | iscalar=iscalar+1;
|
---|
70 | Calib{iscalar}=Calib{2};
|
---|
71 | A{iscalar}=Data_1.A;
|
---|
72 | if isfield(Data_1,'ZIndex') && ~isequal(Data_1.ZIndex,ZIndex)
|
---|
73 | DataOut.Txt='inconsistent plane indexes in the two input fields';
|
---|
74 | end
|
---|
75 | if iscalar==1% case for which only the second field is a scalar
|
---|
76 | [A,AX,AY]=phys_Ima(A,Calib,ZIndex);
|
---|
77 | DataOut_1.A=A{1};
|
---|
78 | DataOut_1.AX=AX;
|
---|
79 | DataOut_1.AY=AY;
|
---|
80 | return
|
---|
81 | end
|
---|
82 | end
|
---|
83 | end
|
---|
84 | if iscalar~=0
|
---|
85 | [A,AX,AY]=phys_Ima(A,Calib,ZIndex);%TODO : introduire interp2_uvmat ds phys_ima
|
---|
86 | DataOut.A=A{1};
|
---|
87 | DataOut.AX=AX;
|
---|
88 | DataOut.AY=AY;
|
---|
89 | if iscalar==2
|
---|
90 | DataOut_1.A=A{2};
|
---|
91 | DataOut_1.AX=AX;
|
---|
92 | DataOut_1.AY=AY;
|
---|
93 | end
|
---|
94 | end
|
---|
95 |
|
---|
96 | % DataOut.VarDimName{2}
|
---|
97 | % DataOut.VarDimName{3}
|
---|
98 | % DataOut.VarDimName{4}
|
---|
99 | % DataOut.VarDimName{5}
|
---|
100 | % DataOut.VarDimName{6}
|
---|
101 | % DataOut.VarDimName{7}
|
---|
102 | % DataOut.VarAttribute{1}
|
---|
103 | % DataOut.VarAttribute{2}
|
---|
104 | % DataOut.VarAttribute{3}
|
---|
105 | % DataOut.VarAttribute{4}
|
---|
106 | % DataOut.VarAttribute{5}
|
---|
107 | % DataOut.VarAttribute{6}
|
---|
108 | % DataOut.VarAttribute{7}
|
---|
109 | %------------------------------------------------
|
---|
110 | function DataOut=phys_1(Data,Calib)
|
---|
111 | % for icell=1:length(Data)
|
---|
112 |
|
---|
113 | DataOut=Data;%default
|
---|
114 | % DataOut.CoordUnit=Calib.CoordUnit; %put flag for physical coordinates
|
---|
115 | if isfield(Calib,'SliceCoord') && isfield(Data,'ZIndex')&&~isempty(Data.ZIndex)&&~isnan(Data.ZIndex)
|
---|
116 | DataOut.PlaneCoord=Calib.SliceCoord(Data.ZIndex,:);% transfer the slice position
|
---|
117 | if isfield(Calib,'SliceAngle') % transfer the slice rotation angles
|
---|
118 | DataOut.PlaneAngle=Calib.SliceAngle(Data.ZIndex,:);
|
---|
119 | end
|
---|
120 | end
|
---|
121 | % The transform ACTS ONLY IF .CoordType='px'and Calib defined
|
---|
122 | if isfield(Data,'CoordUnit')%&& isequal(Data.CoordType,'px')&& ~isempty(Calib)
|
---|
123 | if isfield(Calib,'CoordUnit')
|
---|
124 | DataOut.CoordUnit=Calib.CoordUnit;
|
---|
125 | else
|
---|
126 | DataOut.CoordUnit='cm'; %default
|
---|
127 | end
|
---|
128 | DataOut.TimeUnit='s';
|
---|
129 | %transform of X,Y coordinates for vector fields
|
---|
130 | test_z=0;
|
---|
131 | if isfield(Data,'ZIndex') && ~isempty(Data.ZIndex)&&~isnan(Data.ZIndex)
|
---|
132 | Z=Data.ZIndex;
|
---|
133 | test_z=1;
|
---|
134 | else
|
---|
135 | Z=0;
|
---|
136 | end
|
---|
137 | if isfield(Data,'X') &&isfield(Data,'Y')&&~isempty(Data.X) && ~isempty(Data.Y)
|
---|
138 | [DataOut.X,DataOut.Y,DataOut.Z]=phys_XYZ(Calib,Data.X,Data.Y,Z);
|
---|
139 | if test_z
|
---|
140 | DataOut.ListVarName=[DataOut.ListVarName(1:2) {'Z'} DataOut.ListVarName(3:end)];
|
---|
141 | DataOut.VarDimName=[DataOut.VarDimName(1:2) DataOut.VarDimName(1) DataOut.VarDimName(3:end)];
|
---|
142 | ZAttribute{1}.Role='coord_z';
|
---|
143 | DataOut.VarAttribute=[DataOut.VarAttribute(1:2) ZAttribute DataOut.VarAttribute(3:end)];
|
---|
144 | end
|
---|
145 | if isfield(Data,'U')&&isfield(Data,'V')&&~isempty(Data.U) && ~isempty(Data.V)&& isfield(Data,'dt')
|
---|
146 | if ~isempty(Data.dt)
|
---|
147 | [XOut_1,YOut_1]=phys_XYZ(Calib,Data.X-Data.U/2,Data.Y-Data.V/2,Z);
|
---|
148 | [XOut_2,YOut_2]=phys_XYZ(Calib,Data.X+Data.U/2,Data.Y+Data.V/2,Z);
|
---|
149 | DataOut.U=(XOut_2-XOut_1)/Data.dt;
|
---|
150 | DataOut.V=(YOut_2-YOut_1)/Data.dt;
|
---|
151 | end
|
---|
152 | end
|
---|
153 | end
|
---|
154 | %transform of an image or scalar: done in phys_ima
|
---|
155 |
|
---|
156 | %transform of spatial derivatives
|
---|
157 | if isfield(Data,'X') && ~isempty(Data.X) && isfield(Data,'DjUi') && ~isempty(Data.DjUi)...
|
---|
158 | && isfield(Data,'dt')
|
---|
159 | if ~isempty(Data.dt)
|
---|
160 | % estimate the Jacobian matrix DXpx/DXphys
|
---|
161 | for ip=1:length(Data.X)
|
---|
162 | [Xp1,Yp1]=phys_XYZ(Calib,Data.X(ip)+0.5,Data.Y(ip),Z);
|
---|
163 | [Xm1,Ym1]=phys_XYZ(Calib,Data.X(ip)-0.5,Data.Y(ip),Z);
|
---|
164 | [Xp2,Yp2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)+0.5,Z);
|
---|
165 | [Xm2,Ym2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)-0.5,Z);
|
---|
166 | %Jacobian matrix DXpphys/DXpx
|
---|
167 | DjXi(1,1)=(Xp1-Xm1);
|
---|
168 | DjXi(2,1)=(Yp1-Ym1);
|
---|
169 | DjXi(1,2)=(Xp2-Xm2);
|
---|
170 | DjXi(2,2)=(Yp2-Ym2);
|
---|
171 | DjUi(:,:)=Data.DjUi(ip,:,:);
|
---|
172 | DjUi=(DjXi*DjUi')/DjXi;% =J-1*M*J , curvature effects (derivatives of J) neglected
|
---|
173 | DataOut.DjUi(ip,:,:)=DjUi';
|
---|
174 | end
|
---|
175 | DataOut.DjUi = DataOut.DjUi/Data.dt; % min(Data.DjUi(:,1,1))=DUDX
|
---|
176 | end
|
---|
177 | end
|
---|
178 | end
|
---|
179 |
|
---|
180 | %%%%%%%%%%%%%%%%%%%%
|
---|
181 | function [A_out,Rangx,Rangy]=phys_Ima(A,CalibIn,ZIndex)
|
---|
182 | xcorner=[];
|
---|
183 | ycorner=[];
|
---|
184 | npx=[];
|
---|
185 | npy=[];
|
---|
186 | dx=ones(1,length(A));
|
---|
187 | dy=ones(1,length(A));
|
---|
188 | for icell=1:length(A)
|
---|
189 | siz=size(A{icell});
|
---|
190 | npx=[npx siz(2)];
|
---|
191 | npy=[npy siz(1)];
|
---|
192 | Calib=CalibIn{icell};
|
---|
193 | xima=[0.5 siz(2)-0.5 0.5 siz(2)-0.5];%image coordinates of corners
|
---|
194 | yima=[0.5 0.5 siz(1)-0.5 siz(1)-0.5];
|
---|
195 | [xcorner_new,ycorner_new]=phys_XYZ(Calib,xima,yima,ZIndex);%corresponding physical coordinates
|
---|
196 | dx(icell)=(max(xcorner_new)-min(xcorner_new))/(siz(2)-1);
|
---|
197 | dy(icell)=(max(ycorner_new)-min(ycorner_new))/(siz(1)-1);
|
---|
198 | xcorner=[xcorner xcorner_new];
|
---|
199 | ycorner=[ycorner ycorner_new];
|
---|
200 | end
|
---|
201 | Rangx(1)=min(xcorner);
|
---|
202 | Rangx(2)=max(xcorner);
|
---|
203 | Rangy(2)=min(ycorner);
|
---|
204 | Rangy(1)=max(ycorner);
|
---|
205 | test_multi=(max(npx)~=min(npx)) || (max(npy)~=min(npy)); %different image lengths
|
---|
206 | npX=1+round((Rangx(2)-Rangx(1))/min(dx));% nbre of pixels in the new image (use the finest resolution min(dx) in the set of images)
|
---|
207 | npY=1+round((Rangy(1)-Rangy(2))/min(dy));
|
---|
208 | x=linspace(Rangx(1),Rangx(2),npX);
|
---|
209 | y=linspace(Rangy(1),Rangy(2),npY);
|
---|
210 | [X,Y]=meshgrid(x,y);%grid in physical coordiantes
|
---|
211 | vec_B=[];
|
---|
212 | A_out={};
|
---|
213 | for icell=1:length(A)
|
---|
214 | Calib=CalibIn{icell};
|
---|
215 | if isfield(Calib,'R') || isfield(Calib,'kc')|| test_multi ||~isequal(Calib,CalibIn{1})% the image needs to be interpolated to the new coordinates
|
---|
216 | zphys=0; %default
|
---|
217 | if isfield(Calib,'SliceCoord') %.Z= index of plane
|
---|
218 | SliceCoord=Calib.SliceCoord(ZIndex,:);
|
---|
219 | zphys=SliceCoord(3); %to generalize for non-parallel planes
|
---|
220 | if isfield(Calib,'InterfaceCoord') && isfield(Calib,'RefractionIndex')
|
---|
221 | H=Calib.InterfaceCoord(3);
|
---|
222 | if H>zphys
|
---|
223 | zphys=H-(H-zphys)/Calib.RefractionIndex; %corrected z (virtual object)
|
---|
224 | end
|
---|
225 | end
|
---|
226 | end
|
---|
227 | [XIMA,YIMA]=px_XYZ(CalibIn{icell},X,Y,zphys);% image coordinates for each point in the real space grid
|
---|
228 | XIMA=reshape(round(XIMA),1,npX*npY);%indices reorganized in 'line'
|
---|
229 | YIMA=reshape(round(YIMA),1,npX*npY);
|
---|
230 | flagin=XIMA>=1 & XIMA<=npx(icell) & YIMA >=1 & YIMA<=npy(icell);%flagin=1 inside the original image
|
---|
231 | testuint8=isa(A{icell},'uint8');
|
---|
232 | testuint16=isa(A{icell},'uint16');
|
---|
233 | if numel(siz)==2 %(B/W images)
|
---|
234 | vec_A=reshape(A{icell},1,npx(icell)*npy(icell));%put the original image in line
|
---|
235 | %ind_in=find(flagin);
|
---|
236 | ind_out=find(~flagin);
|
---|
237 | ICOMB=((XIMA-1)*npy(icell)+(npy(icell)+1-YIMA));
|
---|
238 | ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A
|
---|
239 | %vec_B(ind_in)=vec_A(ICOMB);
|
---|
240 | vec_B(flagin)=vec_A(ICOMB);
|
---|
241 | vec_B(~flagin)=zeros(size(ind_out));
|
---|
242 | % vec_B(ind_out)=zeros(size(ind_out));
|
---|
243 | A_out{icell}=reshape(vec_B,npY,npX);%new image in real coordinates
|
---|
244 | elseif numel(siz)==3
|
---|
245 | for icolor=1:siz(3)
|
---|
246 | vec_A=reshape(A{icell}(:,:,icolor),1,npx*npy);%put the original image in line
|
---|
247 | % ind_in=find(flagin);
|
---|
248 | ind_out=find(~flagin);
|
---|
249 | ICOMB=((XIMA-1)*npy+(npy+1-YIMA));
|
---|
250 | ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A
|
---|
251 | vec_B(flagin)=vec_A(ICOMB);
|
---|
252 | vec_B(~flagin)=zeros(size(ind_out));
|
---|
253 | A_out{icell}(:,:,icolor)=reshape(vec_B,npy,npx);%new image in real coordinates
|
---|
254 | end
|
---|
255 | end
|
---|
256 | if testuint8
|
---|
257 | A_out{icell}=uint8(A_out{icell});
|
---|
258 | end
|
---|
259 | if testuint16
|
---|
260 | A_out{icell}=uint16(A_out{icell});
|
---|
261 | end
|
---|
262 | else%
|
---|
263 | A_out{icell}=A{icell};%no transform
|
---|
264 | Rangx=[0.5 npx-0.5];%image coordiantes of corners
|
---|
265 | Rangy=[npy-0.5 0.5];
|
---|
266 | [Rangx]=phys_XYZ(Calib,Rangx,[0.5 0.5],ZIndex);%case of translations without rotation and quadratic deformation
|
---|
267 | [xx,Rangy]=phys_XYZ(Calib,[0.5 0.5],Rangy,ZIndex);
|
---|
268 | end
|
---|
269 | end
|
---|
270 |
|
---|
271 | %------------------------------------------------------------------------
|
---|
272 | %'phys_XYZ':transforms image (px) to real world (phys) coordinates using geometric calibration parameters
|
---|
273 | % function [Xphys,Yphys]=phys_XYZ(Calib,X,Y,Z)
|
---|
274 | %
|
---|
275 | %OUTPUT:
|
---|
276 | %
|
---|
277 | %INPUT:
|
---|
278 | %Z: index of plane
|
---|
279 | function [Xphys,Yphys,Zphys]=phys_XYZ(Calib,X,Y,Zindex)
|
---|
280 | %------------------------------------------------------------------------
|
---|
281 | testangle=0;
|
---|
282 | test_refraction=0;
|
---|
283 | if exist('Zindex','var')&& isequal(Zindex,round(Zindex))&& Zindex>0 && isfield(Calib,'SliceCoord')&&length(Calib.SliceCoord)>=Zindex
|
---|
284 | if isfield(Calib, 'SliceAngle') && ~isequal(Calib.SliceAngle,[0 0 0])
|
---|
285 | testangle=1;
|
---|
286 | om=norm(Calib.SliceAngle(Zindex,:));%norm of rotation angle in radians
|
---|
287 | OmAxis=Calib.SliceAngle(Zindex,:)/om; %unit vector marking the rotation axis
|
---|
288 | cos_om=cos(pi*om/180);
|
---|
289 | sin_om=sin(pi*om/180);
|
---|
290 | coeff=OmAxis(3)*(1-cos_om);
|
---|
291 | norm_plane(1)=OmAxis(1)*coeff+OmAxis(2)*sin_om;
|
---|
292 | norm_plane(2)=OmAxis(2)*coeff-OmAxis(1)*sin_om;
|
---|
293 | norm_plane(3)=OmAxis(3)*coeff+cos_om;
|
---|
294 | Z0=norm_plane*Calib.SliceCoord(Zindex,:)'/norm_plane(3);
|
---|
295 | else
|
---|
296 | Z0=Calib.SliceCoord(Zindex,3);%horizontal plane z=cte
|
---|
297 | end
|
---|
298 | Z0virt=Z0;
|
---|
299 | if isfield(Calib,'InterfaceCoord') && isfield(Calib,'RefractionIndex')
|
---|
300 | H=Calib.InterfaceCoord(3);
|
---|
301 | if H>Z0
|
---|
302 | Z0virt=H-(H-Z0)/Calib.RefractionIndex; %corrected z (virtual object)
|
---|
303 | test_refraction=1;
|
---|
304 | end
|
---|
305 | end
|
---|
306 | else
|
---|
307 | Z0=0;
|
---|
308 | Z0virt=0;
|
---|
309 | end
|
---|
310 | if ~exist('X','var')||~exist('Y','var')
|
---|
311 | Xphys=[];
|
---|
312 | Yphys=[];%default
|
---|
313 | return
|
---|
314 | end
|
---|
315 | %coordinate transform
|
---|
316 | if ~isfield(Calib,'fx_fy')
|
---|
317 | Calib.fx_fy=[1 1];
|
---|
318 | end
|
---|
319 | if ~isfield(Calib,'Tx_Ty_Tz')
|
---|
320 | Calib.Tx_Ty_Tz=[0 0 1];
|
---|
321 | end
|
---|
322 | if ~isfield(Calib,'Cx_Cy')
|
---|
323 | Calib.Cx_Cy=[0 0];
|
---|
324 | end
|
---|
325 | if ~isfield(Calib,'kc')
|
---|
326 | Calib.kc=0;
|
---|
327 | end
|
---|
328 | if isfield(Calib,'R')
|
---|
329 | R=(Calib.R)';
|
---|
330 | if testangle
|
---|
331 | a=-norm_plane(1)/norm_plane(3);
|
---|
332 | b=-norm_plane(2)/norm_plane(3);
|
---|
333 | if test_refraction
|
---|
334 | a=a/Calib.RefractionIndex;
|
---|
335 | b=b/Calib.RefractionIndex;
|
---|
336 | end
|
---|
337 | R(1)=R(1)+a*R(3);
|
---|
338 | R(2)=R(2)+b*R(3);
|
---|
339 | R(4)=R(4)+a*R(6);
|
---|
340 | R(5)=R(5)+b*R(6);
|
---|
341 | R(7)=R(7)+a*R(9);
|
---|
342 | R(8)=R(8)+b*R(9);
|
---|
343 | end
|
---|
344 | Tx=Calib.Tx_Ty_Tz(1);
|
---|
345 | Ty=Calib.Tx_Ty_Tz(2);
|
---|
346 | Tz=Calib.Tx_Ty_Tz(3);
|
---|
347 | f=Calib.fx_fy(1);%dpy=1; sx=1
|
---|
348 | dpx=Calib.fx_fy(2)/Calib.fx_fy(1);
|
---|
349 | Dx=R(5)*R(7)-R(4)*R(8);
|
---|
350 | Dy=R(1)*R(8)-R(2)*R(7);
|
---|
351 | D0=f*(R(2)*R(4)-R(1)*R(5));
|
---|
352 | Z11=R(6)*R(8)-R(5)*R(9);
|
---|
353 | Z12=R(2)*R(9)-R(3)*R(8);
|
---|
354 | Z21=R(4)*R(9)-R(6)*R(7);
|
---|
355 | Z22=R(3)*R(7)-R(1)*R(9);
|
---|
356 | Zx0=R(3)*R(5)-R(2)*R(6);
|
---|
357 | Zy0=R(1)*R(6)-R(3)*R(4);
|
---|
358 | A11=R(8)*Ty-R(5)*Tz+Z11*Z0virt;
|
---|
359 | A12=R(2)*Tz-R(8)*Tx+Z12*Z0virt;
|
---|
360 | A21=-R(7)*Ty+R(4)*Tz+Z21*Z0virt;
|
---|
361 | A22=-R(1)*Tz+R(7)*Tx+Z22*Z0virt;
|
---|
362 | X0=f*(R(5)*Tx-R(2)*Ty+Zx0*Z0virt);
|
---|
363 | Y0=f*(-R(4)*Tx+R(1)*Ty+Zy0*Z0virt);
|
---|
364 | %px to camera:
|
---|
365 | Xd=dpx*(X-Calib.Cx_Cy(1)); % sensor coordinates
|
---|
366 | Yd=(Y-Calib.Cx_Cy(2));
|
---|
367 | dist_fact=1+Calib.kc*(Xd.*Xd+Yd.*Yd)/(f*f); %distortion factor
|
---|
368 | Xu=Xd./dist_fact;%undistorted sensor coordinates
|
---|
369 | Yu=Yd./dist_fact;
|
---|
370 | denom=Dx*Xu+Dy*Yu+D0;
|
---|
371 | Xphys=(A11.*Xu+A12.*Yu+X0)./denom;%world coordinates
|
---|
372 | Yphys=(A21.*Xu+A22.*Yu+Y0)./denom;
|
---|
373 | if testangle
|
---|
374 | Zphys=Z0+a*Xphys+b*Yphys;
|
---|
375 | else
|
---|
376 | Zphys=Z0;
|
---|
377 | end
|
---|
378 | else
|
---|
379 | Xphys=-Calib.Tx_Ty_Tz(1)+X/Calib.fx_fy(1);
|
---|
380 | Yphys=-Calib.Tx_Ty_Tz(2)+Y/Calib.fx_fy(2);
|
---|
381 | end
|
---|
382 |
|
---|
383 | %'px_XYZ': transform phys coordinates to image coordinates (px)
|
---|
384 | %
|
---|
385 | % OUPUT:
|
---|
386 | % X,Y: array of coordinates in the image cooresponding to the input physical positions
|
---|
387 | % (origin at lower leftcorner, unit=pixel)
|
---|
388 |
|
---|
389 | % INPUT:
|
---|
390 | % Calib: structure containing the calibration parameters (read from the ImaDoc .xml file)
|
---|
391 | % Xphys, Yphys: array of x,y physical coordinates
|
---|
392 | % [Z0]: corresponding array of z physical coordinates (0 by default)
|
---|
393 |
|
---|
394 |
|
---|
395 |
|
---|
396 |
|
---|