1 | %'phys': transforms image (px) to real world (phys) coordinates using geometric calibration parameters
|
---|
2 | % DataOut=phys(Data,CalibData) , transform one input field
|
---|
3 | % [DataOut,DataOut_1]=phys(Data,CalibData,Data_1,CalibData_1), transform two input fields
|
---|
4 |
|
---|
5 | % OUTPUT:
|
---|
6 | % DataOut: structure representing the first field in phys coordinates
|
---|
7 | % DataOut_1: structure representing the second field in phys coordinates
|
---|
8 |
|
---|
9 | %INPUT:
|
---|
10 | % Data: structure of input data
|
---|
11 | % with fields .A (image or scalar matrix), AX, AY
|
---|
12 | % .X,.Y,.U,.V, .DjUi
|
---|
13 | % .ZIndex: index of plane in multilevel case
|
---|
14 | % .CoordType='phys' or 'px', The function ACTS ONLY IF .CoordType='px'
|
---|
15 | % CalibData: structure containing calibration parameters or a subtree Calib.GeometryCalib =calibration data (tsai parameters)
|
---|
16 | % Data_1, CalibData_1: same as Data, CalibData for the second field.
|
---|
17 |
|
---|
18 | function [DataOut,DataOut_1]=phys(varargin)
|
---|
19 | % A FAIRE: 1- verifier si DataIn est une 'field structure'(.ListVarName'):
|
---|
20 | % chercher ListVarAttribute, for each field (cell of variables):
|
---|
21 | % .CoordType: 'phys' or 'px' (default==phys, no transform)
|
---|
22 | % .scale_factor: =dt (to transform displacement into velocity) default=1
|
---|
23 | % .covariance: 'scalar', 'coord', 'D_i': covariant (like velocity), 'D^i': contravariant (like gradient), 'D^jD_i' (like strain tensor)
|
---|
24 | % (default='coord' if .Role='coord_x,_y...,
|
---|
25 | % 'D_i' if '.Role='vector_x,...',
|
---|
26 | % 'scalar', else (thenno change except scale factor)
|
---|
27 | %% analyse input and set default output
|
---|
28 | DataOut=varargin{1};%default first output field
|
---|
29 | DataOut_1=[]; %default second output field
|
---|
30 | if nargin>=2 % nargin =nbre of input variables
|
---|
31 | if isfield(varargin{2},'GeometryCalib')
|
---|
32 | Calib{1}=varargin{2}.GeometryCalib;
|
---|
33 | else
|
---|
34 | Calib{1}=[];
|
---|
35 | end
|
---|
36 | if nargin>=3 %two input fields
|
---|
37 | DataOut_1=varargin{3};%default second output field
|
---|
38 | if nargin>=4 && isfield(varargin{4},'GeometryCalib')
|
---|
39 | Calib{2}=CalibData_1.GeometryCalib;
|
---|
40 | else
|
---|
41 | Calib{2}=Calib{1};
|
---|
42 | end
|
---|
43 | end
|
---|
44 | end
|
---|
45 |
|
---|
46 | %% get the z index defining the section plane
|
---|
47 | if isfield(varargin{1},'ZIndex')&&~isempty(varargin{1}.ZIndex)&&~isnan(varargin{1}.ZIndex)
|
---|
48 | ZIndex=varargin{1}.ZIndex;
|
---|
49 | else
|
---|
50 | ZIndex=1;
|
---|
51 | end
|
---|
52 |
|
---|
53 | %% transform first field
|
---|
54 | iscalar=0;% counter of scalar fields
|
---|
55 | if ~isempty(Calib{1})
|
---|
56 | if ~isfield(Calib{1},'CalibrationType')||~isfield(Calib{1},'CoordUnit')
|
---|
57 | return %bad calib parameter input
|
---|
58 | end
|
---|
59 | if ~(isfield(varargin{1},'CoordUnit')&& strcmp(varargin{1}.CoordUnit,'pixel'))
|
---|
60 | return % transform only fields in pixel coordinates
|
---|
61 | end
|
---|
62 | DataOut=phys_1(varargin{1},Calib{1},ZIndex);% transform coordiantes and velocity components
|
---|
63 | %case of images or scalar: in case of two input fields, we need to project the transform on the same regular grid
|
---|
64 | if isfield(varargin{1},'A') && isfield(varargin{1},'AX') && ~isempty(varargin{1}.AX) && isfield(varargin{1},'AY')&&...
|
---|
65 | ~isempty(varargin{1}.AY) && length(varargin{1}.A)>1
|
---|
66 | iscalar=1;
|
---|
67 | A{1}=varargin{1}.A;
|
---|
68 | end
|
---|
69 | end
|
---|
70 |
|
---|
71 | %% document the selected plane position and angle if relevant
|
---|
72 | if isfield(Calib{1},'SliceCoord')&&size(Calib{1}.SliceCoord,1)>=ZIndex
|
---|
73 | DataOut.PlaneCoord=Calib{1}.SliceCoord(ZIndex,:);% transfer the slice position corresponding to index ZIndex
|
---|
74 | if isfield(Calib{1},'SliceAngle') % transfer the slice rotation angles
|
---|
75 | if isequal(size(Calib{1}.SliceAngle,1),1)% case of a unique angle
|
---|
76 | DataOut.PlaneAngle=Calib{1}.SliceAngle;
|
---|
77 | else % case of multiple planes with different angles: select the plane with index ZIndex
|
---|
78 | DataOut.PlaneAngle=Calib{1}.SliceAngle(ZIndex,:);
|
---|
79 | end
|
---|
80 | end
|
---|
81 | end
|
---|
82 |
|
---|
83 | %% transform second field if relevant
|
---|
84 | if ~isempty(DataOut_1)
|
---|
85 | if isfield(varargin{3},'ZIndex') && ~isequal(varargin{3}.ZIndex,ZIndex)
|
---|
86 | DataOut_1.Txt='different plane indices for the two input fields';
|
---|
87 | return
|
---|
88 | end
|
---|
89 | if ~isfield(Calib{2},'CalibrationType')||~isfield(Calib{2},'CoordUnit')
|
---|
90 | return %bad calib parameter input
|
---|
91 | end
|
---|
92 | if ~(isfield(varargin{3},'CoordUnit')&& strcmp(varargin{3}.CoordUnit,'pixel'))
|
---|
93 | return % transform only fields in pixel coordinates
|
---|
94 | end
|
---|
95 | DataOut_1=phys_1(Data_1,Calib{2},ZIndex);
|
---|
96 | if isfield(Calib{1},'SliceCoord')
|
---|
97 | if ~(isfield(Calib{2},'SliceCoord') && isequal(Calib{2}.SliceCoord,Calib{1}.SliceCoord))
|
---|
98 | DataOut_1.Txt='different plane positions for the two input fields';
|
---|
99 | return
|
---|
100 | end
|
---|
101 | DataOut_1.PlaneCoord=DataOut.PlaneCoord;% same plane position for the two input fields
|
---|
102 | if isfield(Calib{1},'SliceAngle')
|
---|
103 | if ~(isfield(Calib{2},'SliceAngle') && isequal(Calib{2}.SliceAngle,Calib{1}.SliceAngle))
|
---|
104 | DataOut_1.Txt='different plane angles for the two input fields';
|
---|
105 | return
|
---|
106 | end
|
---|
107 | DataOut_1.PlaneAngle=DataOut.PlaneAngle; % same plane angle for the two input fields
|
---|
108 | end
|
---|
109 | end
|
---|
110 | if isfield(varargin{3},'A')&&isfield(varargin{3},'AX')&&~isempty(varargin{3}.AX) && isfield(varargin{3},'AY')&&...
|
---|
111 | ~isempty(varargin{3}.AY)&&length(varargin{3}.A)>1
|
---|
112 | iscalar=iscalar+1;
|
---|
113 | Calib{iscalar}=Calib{2};
|
---|
114 | A{iscalar}=varargin{3}.A;
|
---|
115 | end
|
---|
116 | end
|
---|
117 |
|
---|
118 | %% transform the scalar(s) or image(s)
|
---|
119 | if iscalar~=0
|
---|
120 | [A,AX,AY]=phys_Ima(A,Calib,ZIndex);%TODO : introduire interp2_uvmat ds phys_ima
|
---|
121 | if iscalar==1 && ~isempty(DataOut_1) % case for which only the second field is a scalar
|
---|
122 | DataOut_1.A=A{1};
|
---|
123 | DataOut_1.AX=AX;
|
---|
124 | DataOut_1.AY=AY;
|
---|
125 | else
|
---|
126 | DataOut.A=A{1};
|
---|
127 | DataOut.AX=AX;
|
---|
128 | DataOut.AY=AY;
|
---|
129 | end
|
---|
130 | if iscalar==2
|
---|
131 | DataOut_1.A=A{2};
|
---|
132 | DataOut_1.AX=AX;
|
---|
133 | DataOut_1.AY=AY;
|
---|
134 | end
|
---|
135 | end
|
---|
136 |
|
---|
137 | %------------------------------------------------
|
---|
138 | %--- transform a single field
|
---|
139 | function DataOut=phys_1(Data,Calib,ZIndex)
|
---|
140 | %------------------------------------------------
|
---|
141 | %% set default output
|
---|
142 | DataOut=Data;%default
|
---|
143 | DataOut.CoordUnit=Calib.CoordUnit;% the output coord unit is set by the calibration parameters
|
---|
144 |
|
---|
145 | %% transform X,Y coordinates for velocity fields (transform of an image or scalar done in phys_ima)
|
---|
146 | if isfield(Data,'X') &&isfield(Data,'Y')&&~isempty(Data.X) && ~isempty(Data.Y)
|
---|
147 | [DataOut.X,DataOut.Y]=phys_XYZ(Calib,Data.X,Data.Y,ZIndex);
|
---|
148 | Dt=1; %default
|
---|
149 | if isfield(Data,'dt')&&~isempty(Data.dt)
|
---|
150 | Dt=Data.dt;
|
---|
151 | end
|
---|
152 | if isfield(Data,'Dt')&&~isempty(Data.Dt)
|
---|
153 | Dt=Data.Dt;
|
---|
154 | end
|
---|
155 | if isfield(Data,'U')&&isfield(Data,'V')&&~isempty(Data.U) && ~isempty(Data.V)
|
---|
156 | [XOut_1,YOut_1]=phys_XYZ(Calib,Data.X-Data.U/2,Data.Y-Data.V/2,ZIndex);
|
---|
157 | [XOut_2,YOut_2]=phys_XYZ(Calib,Data.X+Data.U/2,Data.Y+Data.V/2,ZIndex);
|
---|
158 | DataOut.U=(XOut_2-XOut_1)/Dt;
|
---|
159 | DataOut.V=(YOut_2-YOut_1)/Dt;
|
---|
160 | end
|
---|
161 | if ~strcmp(Calib.CalibrationType,'rescale') && isfield(Data,'X_tps') && isfield(Data,'Y_tps')
|
---|
162 | [DataOut.X_tps,DataOut.Y_tps]=phys_XYZ(Calib,Data.X,Data.Y,ZIndex);
|
---|
163 | end
|
---|
164 | end
|
---|
165 |
|
---|
166 | %% transform of spatial derivatives: TODO check the case with plane angles
|
---|
167 | if isfield(Data,'X') && ~isempty(Data.X) && isfield(Data,'DjUi') && ~isempty(Data.DjUi)...
|
---|
168 | && isfield(Data,'dt')
|
---|
169 | if ~isempty(Data.dt)
|
---|
170 | % estimate the Jacobian matrix DXpx/DXphys
|
---|
171 | for ip=1:length(Data.X)
|
---|
172 | [Xp1,Yp1]=phys_XYZ(Calib,Data.X(ip)+0.5,Data.Y(ip),ZIndex);
|
---|
173 | [Xm1,Ym1]=phys_XYZ(Calib,Data.X(ip)-0.5,Data.Y(ip),ZIndex);
|
---|
174 | [Xp2,Yp2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)+0.5,ZIndex);
|
---|
175 | [Xm2,Ym2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)-0.5,ZIndex);
|
---|
176 | %Jacobian matrix DXpphys/DXpx
|
---|
177 | DjXi(1,1)=(Xp1-Xm1);
|
---|
178 | DjXi(2,1)=(Yp1-Ym1);
|
---|
179 | DjXi(1,2)=(Xp2-Xm2);
|
---|
180 | DjXi(2,2)=(Yp2-Ym2);
|
---|
181 | DjUi(:,:)=Data.DjUi(ip,:,:);
|
---|
182 | DjUi=(DjXi*DjUi')/DjXi;% =J-1*M*J , curvature effects (derivatives of J) neglected
|
---|
183 | DataOut.DjUi(ip,:,:)=DjUi';
|
---|
184 | end
|
---|
185 | DataOut.DjUi = DataOut.DjUi/Dt; % min(Data.DjUi(:,1,1))=DUDX
|
---|
186 | end
|
---|
187 | end
|
---|
188 |
|
---|
189 |
|
---|
190 | %%%%%%%%%%%%%%%%%%%%
|
---|
191 | function [A_out,Rangx,Rangy]=phys_Ima(A,CalibIn,ZIndex)
|
---|
192 | xcorner=[];
|
---|
193 | ycorner=[];
|
---|
194 | npx=[];
|
---|
195 | npy=[];
|
---|
196 | dx=ones(1,length(A));
|
---|
197 | dy=ones(1,length(A));
|
---|
198 | for icell=1:length(A)
|
---|
199 | siz=size(A{icell});
|
---|
200 | npx=[npx siz(2)];
|
---|
201 | npy=[npy siz(1)];
|
---|
202 | Calib=CalibIn{icell};
|
---|
203 | xima=[0.5 siz(2)-0.5 0.5 siz(2)-0.5];%image coordinates of corners
|
---|
204 | yima=[0.5 0.5 siz(1)-0.5 siz(1)-0.5];
|
---|
205 | [xcorner_new,ycorner_new]=phys_XYZ(Calib,xima,yima,ZIndex);%corresponding physical coordinates
|
---|
206 | dx(icell)=(max(xcorner_new)-min(xcorner_new))/(siz(2)-1);
|
---|
207 | dy(icell)=(max(ycorner_new)-min(ycorner_new))/(siz(1)-1);
|
---|
208 | xcorner=[xcorner xcorner_new];
|
---|
209 | ycorner=[ycorner ycorner_new];
|
---|
210 | end
|
---|
211 | Rangx(1)=min(xcorner);
|
---|
212 | Rangx(2)=max(xcorner);
|
---|
213 | Rangy(2)=min(ycorner);
|
---|
214 | Rangy(1)=max(ycorner);
|
---|
215 | test_multi=(max(npx)~=min(npx)) || (max(npy)~=min(npy)); %different image lengths
|
---|
216 | npX=1+round((Rangx(2)-Rangx(1))/min(dx));% nbre of pixels in the new image (use the finest resolution min(dx) in the set of images)
|
---|
217 | npY=1+round((Rangy(1)-Rangy(2))/min(dy));
|
---|
218 | x=linspace(Rangx(1),Rangx(2),npX);
|
---|
219 | y=linspace(Rangy(1),Rangy(2),npY);
|
---|
220 | [X,Y]=meshgrid(x,y);%grid in physical coordiantes
|
---|
221 | vec_B=[];
|
---|
222 | A_out={};
|
---|
223 | for icell=1:length(A)
|
---|
224 | Calib=CalibIn{icell};
|
---|
225 | % rescaling of the image coordinates without change of the image array
|
---|
226 | if strcmp(Calib.CalibrationType,'rescale') && isequal(Calib,CalibIn{1})
|
---|
227 | A_out{icell}=A{icell};%no transform
|
---|
228 | Rangx=[0.5 npx-0.5];%image coordiantes of corners
|
---|
229 | Rangy=[npy-0.5 0.5];
|
---|
230 | [Rangx]=phys_XYZ(Calib,Rangx,[0.5 0.5],ZIndex);%case of translations without rotation and quadratic deformation
|
---|
231 | [xx,Rangy]=phys_XYZ(Calib,[0.5 0.5],Rangy,ZIndex);
|
---|
232 | else
|
---|
233 | % the image needs to be interpolated to the new coordinates
|
---|
234 | zphys=0; %default
|
---|
235 | if isfield(Calib,'SliceCoord') %.Z= index of plane
|
---|
236 | SliceCoord=Calib.SliceCoord(ZIndex,:);
|
---|
237 | zphys=SliceCoord(3); %to generalize for non-parallel planes
|
---|
238 | if isfield(Calib,'InterfaceCoord') && isfield(Calib,'RefractionIndex')
|
---|
239 | H=Calib.InterfaceCoord(3);
|
---|
240 | if H>zphys
|
---|
241 | zphys=H-(H-zphys)/Calib.RefractionIndex; %corrected z (virtual object)
|
---|
242 | end
|
---|
243 | end
|
---|
244 | end
|
---|
245 | [XIMA,YIMA]=px_XYZ(CalibIn{icell},X,Y,zphys);% image coordinates for each point in the real space grid
|
---|
246 | XIMA=reshape(round(XIMA),1,npX*npY);%indices reorganized in 'line'
|
---|
247 | YIMA=reshape(round(YIMA),1,npX*npY);
|
---|
248 | flagin=XIMA>=1 & XIMA<=npx(icell) & YIMA >=1 & YIMA<=npy(icell);%flagin=1 inside the original image
|
---|
249 | testuint8=isa(A{icell},'uint8');
|
---|
250 | testuint16=isa(A{icell},'uint16');
|
---|
251 | if numel(siz)==2 %(B/W images)
|
---|
252 | vec_A=reshape(A{icell},1,npx(icell)*npy(icell));%put the original image in line
|
---|
253 | %ind_in=find(flagin);
|
---|
254 | ind_out=find(~flagin);
|
---|
255 | ICOMB=((XIMA-1)*npy(icell)+(npy(icell)+1-YIMA));
|
---|
256 | ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A
|
---|
257 | %vec_B(ind_in)=vec_A(ICOMB);
|
---|
258 | vec_B(flagin)=vec_A(ICOMB);
|
---|
259 | vec_B(~flagin)=zeros(size(ind_out));
|
---|
260 | % vec_B(ind_out)=zeros(size(ind_out));
|
---|
261 | A_out{icell}=reshape(vec_B,npY,npX);%new image in real coordinates
|
---|
262 | elseif numel(siz)==3
|
---|
263 | for icolor=1:siz(3)
|
---|
264 | vec_A=reshape(A{icell}(:,:,icolor),1,npx*npy);%put the original image in line
|
---|
265 | % ind_in=find(flagin);
|
---|
266 | ind_out=find(~flagin);
|
---|
267 | ICOMB=((XIMA-1)*npy+(npy+1-YIMA));
|
---|
268 | ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A
|
---|
269 | vec_B(flagin)=vec_A(ICOMB);
|
---|
270 | vec_B(~flagin)=zeros(size(ind_out));
|
---|
271 | A_out{icell}(:,:,icolor)=reshape(vec_B,npy,npx);%new image in real coordinates
|
---|
272 | end
|
---|
273 | end
|
---|
274 | if testuint8
|
---|
275 | A_out{icell}=uint8(A_out{icell});
|
---|
276 | end
|
---|
277 | if testuint16
|
---|
278 | A_out{icell}=uint16(A_out{icell});
|
---|
279 | end
|
---|
280 | end
|
---|
281 | end
|
---|
282 |
|
---|