%'phys': transforms image (px) to real world (phys) coordinates using geometric calibration parameters % DataOut=phys(Data,CalibData) , transform one input field % [DataOut,DataOut_1]=phys(Data,CalibData,Data_1,CalibData_1), transform two input fields % OUTPUT: % DataOut: structure representing the first field in phys coordinates % DataOut_1: structure representing the second field in phys coordinates %INPUT: % Data: structure of input data % with fields .A (image or scalar matrix), AX, AY % .X,.Y,.U,.V, .DjUi % .ZIndex: index of plane in multilevel case % .CoordType='phys' or 'px', The function ACTS ONLY IF .CoordType='px' % CalibData: structure containing calibration parameters or a subtree Calib.GeometryCalib =calibration data (tsai parameters) % Data_1, CalibData_1: same as Data, CalibData for the second field. function [DataOut,DataOut_1]=phys(varargin) % A FAIRE: 1- verifier si DataIn est une 'field structure'(.ListVarName'): % chercher ListVarAttribute, for each field (cell of variables): % .CoordType: 'phys' or 'px' (default==phys, no transform) % .scale_factor: =dt (to transform displacement into velocity) default=1 % .covariance: 'scalar', 'coord', 'D_i': covariant (like velocity), 'D^i': contravariant (like gradient), 'D^jD_i' (like strain tensor) % (default='coord' if .Role='coord_x,_y..., % 'D_i' if '.Role='vector_x,...', % 'scalar', else (thenno change except scale factor) %% analyse input and set default output DataOut=varargin{1};%default first output field DataOut_1=[]; %default second output field if nargin>=2 % nargin =nbre of input variables if isfield(varargin{2},'GeometryCalib') Calib{1}=varargin{2}.GeometryCalib; else Calib{1}=[]; end if nargin>=3 %two input fields DataOut_1=varargin{3};%default second output field if nargin>=4 && isfield(varargin{4},'GeometryCalib') Calib{2}=varargin{4}.GeometryCalib; else Calib{2}=Calib{1}; end end end %% get the z index defining the section plane if isfield(varargin{1},'ZIndex')&&~isempty(varargin{1}.ZIndex)&&~isnan(varargin{1}.ZIndex) ZIndex=varargin{1}.ZIndex; else ZIndex=1; end %% transform first field iscalar=0;% counter of scalar fields if ~isempty(Calib{1}) if ~isfield(Calib{1},'CalibrationType')||~isfield(Calib{1},'CoordUnit') return %bad calib parameter input end if ~(isfield(varargin{1},'CoordUnit')&& strcmp(varargin{1}.CoordUnit,'pixel')) return % transform only fields in pixel coordinates end DataOut=phys_1(varargin{1},Calib{1},ZIndex);% transform coordiantes and velocity components %case of images or scalar: in case of two input fields, we need to project the transform on the same regular grid if isfield(varargin{1},'A') && isfield(varargin{1},'AX') && ~isempty(varargin{1}.AX) && isfield(varargin{1},'AY')&&... ~isempty(varargin{1}.AY) && length(varargin{1}.A)>1 iscalar=1; A{1}=varargin{1}.A; end end %% document the selected plane position and angle if relevant if isfield(Calib{1},'SliceCoord')&&size(Calib{1}.SliceCoord,1)>=ZIndex DataOut.PlaneCoord=Calib{1}.SliceCoord(ZIndex,:);% transfer the slice position corresponding to index ZIndex if isfield(Calib{1},'SliceAngle') % transfer the slice rotation angles if isequal(size(Calib{1}.SliceAngle,1),1)% case of a unique angle DataOut.PlaneAngle=Calib{1}.SliceAngle; else % case of multiple planes with different angles: select the plane with index ZIndex DataOut.PlaneAngle=Calib{1}.SliceAngle(ZIndex,:); end end end %% transform second field if relevant if ~isempty(DataOut_1) if isfield(varargin{3},'ZIndex') && ~isequal(varargin{3}.ZIndex,ZIndex) DataOut_1.Txt='different plane indices for the two input fields'; return end if ~isfield(Calib{2},'CalibrationType')||~isfield(Calib{2},'CoordUnit') return %bad calib parameter input end if ~(isfield(varargin{3},'CoordUnit')&& strcmp(varargin{3}.CoordUnit,'pixel')) return % transform only fields in pixel coordinates end DataOut_1=phys_1(DataOut_1,Calib{2},ZIndex); if isfield(Calib{1},'SliceCoord') if ~(isfield(Calib{2},'SliceCoord') && isequal(Calib{2}.SliceCoord,Calib{1}.SliceCoord)) DataOut_1.Txt='different plane positions for the two input fields'; return end DataOut_1.PlaneCoord=DataOut.PlaneCoord;% same plane position for the two input fields if isfield(Calib{1},'SliceAngle') if ~(isfield(Calib{2},'SliceAngle') && isequal(Calib{2}.SliceAngle,Calib{1}.SliceAngle)) DataOut_1.Txt='different plane angles for the two input fields'; return end DataOut_1.PlaneAngle=DataOut.PlaneAngle; % same plane angle for the two input fields end end if isfield(varargin{3},'A')&&isfield(varargin{3},'AX')&&~isempty(varargin{3}.AX) && isfield(varargin{3},'AY')&&... ~isempty(varargin{3}.AY)&&length(varargin{3}.A)>1 iscalar=iscalar+1; Calib{iscalar}=Calib{2}; A{iscalar}=varargin{3}.A; end end %% transform the scalar(s) or image(s) if iscalar~=0 [A,AX,AY]=phys_Ima(A,Calib,ZIndex);%TODO : introduire interp2_uvmat ds phys_ima if iscalar==1 && ~isempty(DataOut_1) % case for which only the second field is a scalar DataOut_1.A=A{1}; DataOut_1.AX=AX; DataOut_1.AY=AY; else DataOut.A=A{1}; DataOut.AX=AX; DataOut.AY=AY; end if iscalar==2 DataOut_1.A=A{2}; DataOut_1.AX=AX; DataOut_1.AY=AY; end end %------------------------------------------------ %--- transform a single field function DataOut=phys_1(Data,Calib,ZIndex) %------------------------------------------------ %% set default output DataOut=Data;%default DataOut.CoordUnit=Calib.CoordUnit;% the output coord unit is set by the calibration parameters %% transform X,Y coordinates for velocity fields (transform of an image or scalar done in phys_ima) if isfield(Data,'X') &&isfield(Data,'Y')&&~isempty(Data.X) && ~isempty(Data.Y) [DataOut.X,DataOut.Y]=phys_XYZ(Calib,Data.X,Data.Y,ZIndex); Dt=1; %default if isfield(Data,'dt')&&~isempty(Data.dt) Dt=Data.dt; end if isfield(Data,'Dt')&&~isempty(Data.Dt) Dt=Data.Dt; end if isfield(Data,'U')&&isfield(Data,'V')&&~isempty(Data.U) && ~isempty(Data.V) [XOut_1,YOut_1]=phys_XYZ(Calib,Data.X-Data.U/2,Data.Y-Data.V/2,ZIndex); [XOut_2,YOut_2]=phys_XYZ(Calib,Data.X+Data.U/2,Data.Y+Data.V/2,ZIndex); DataOut.U=(XOut_2-XOut_1)/Dt; DataOut.V=(YOut_2-YOut_1)/Dt; end % if ~strcmp(Calib.CalibrationType,'rescale') && isfield(Data,'X_tps') && isfield(Data,'Y_tps') % [DataOut.X_tps,DataOut.Y_tps]=phys_XYZ(Calib,Data.X,Data.Y,ZIndex); % end end %% suppress tps list_tps={'Coord_tps' 'U_tps' 'V_tps' 'SubRange' 'NbSites'}; ind_remove=[]; for ilist=1:numel(list_tps) ind_tps=find(strcmp(list_tps{ilist},Data.ListVarName)); if ~isempty(ind_tps) ind_remove=[ind_remove ind_tps]; DataOut=rmfield(DataOut,list_tps{ilist}); end end DataOut.ListVarName(ind_remove)=[]; DataOut.VarDimName(ind_remove)=[]; DataOut.VarAttribute(ind_remove)=[]; %% transform of spatial derivatives: TODO check the case with plane angles if isfield(Data,'X') && ~isempty(Data.X) && isfield(Data,'DjUi') && ~isempty(Data.DjUi)... && isfield(Data,'dt') if ~isempty(Data.dt) % estimate the Jacobian matrix DXpx/DXphys for ip=1:length(Data.X) [Xp1,Yp1]=phys_XYZ(Calib,Data.X(ip)+0.5,Data.Y(ip),ZIndex); [Xm1,Ym1]=phys_XYZ(Calib,Data.X(ip)-0.5,Data.Y(ip),ZIndex); [Xp2,Yp2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)+0.5,ZIndex); [Xm2,Ym2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)-0.5,ZIndex); %Jacobian matrix DXpphys/DXpx DjXi(1,1)=(Xp1-Xm1); DjXi(2,1)=(Yp1-Ym1); DjXi(1,2)=(Xp2-Xm2); DjXi(2,2)=(Yp2-Ym2); DjUi(:,:)=Data.DjUi(ip,:,:); DjUi=(DjXi*DjUi')/DjXi;% =J-1*M*J , curvature effects (derivatives of J) neglected DataOut.DjUi(ip,:,:)=DjUi'; end DataOut.DjUi = DataOut.DjUi/Dt; % min(Data.DjUi(:,1,1))=DUDX end end %%%%%%%%%%%%%%%%%%%% function [A_out,Rangx,Rangy]=phys_Ima(A,CalibIn,ZIndex) xcorner=[]; ycorner=[]; npx=[]; npy=[]; dx=ones(1,length(A)); dy=ones(1,length(A)); for icell=1:length(A) siz=size(A{icell}); npx=[npx siz(2)]; npy=[npy siz(1)]; Calib=CalibIn{icell}; xima=[0.5 siz(2)-0.5 0.5 siz(2)-0.5];%image coordinates of corners yima=[0.5 0.5 siz(1)-0.5 siz(1)-0.5]; [xcorner_new,ycorner_new]=phys_XYZ(Calib,xima,yima,ZIndex);%corresponding physical coordinates dx(icell)=(max(xcorner_new)-min(xcorner_new))/(siz(2)-1); dy(icell)=(max(ycorner_new)-min(ycorner_new))/(siz(1)-1); xcorner=[xcorner xcorner_new]; ycorner=[ycorner ycorner_new]; end Rangx(1)=min(xcorner); Rangx(2)=max(xcorner); Rangy(2)=min(ycorner); Rangy(1)=max(ycorner); test_multi=(max(npx)~=min(npx)) || (max(npy)~=min(npy)); %different image lengths npX=1+round((Rangx(2)-Rangx(1))/min(dx));% nbre of pixels in the new image (use the finest resolution min(dx) in the set of images) npY=1+round((Rangy(1)-Rangy(2))/min(dy)); x=linspace(Rangx(1),Rangx(2),npX); y=linspace(Rangy(1),Rangy(2),npY); [X,Y]=meshgrid(x,y);%grid in physical coordiantes vec_B=[]; A_out={}; for icell=1:length(A) Calib=CalibIn{icell}; % rescaling of the image coordinates without change of the image array if strcmp(Calib.CalibrationType,'rescale') && isequal(Calib,CalibIn{1}) A_out{icell}=A{icell};%no transform Rangx=[0.5 npx-0.5];%image coordiantes of corners Rangy=[npy-0.5 0.5]; [Rangx]=phys_XYZ(Calib,Rangx,[0.5 0.5],ZIndex);%case of translations without rotation and quadratic deformation [xx,Rangy]=phys_XYZ(Calib,[0.5 0.5],Rangy,ZIndex); else % the image needs to be interpolated to the new coordinates zphys=0; %default if isfield(Calib,'SliceCoord') %.Z= index of plane SliceCoord=Calib.SliceCoord(ZIndex,:); zphys=SliceCoord(3); %to generalize for non-parallel planes if isfield(Calib,'InterfaceCoord') && isfield(Calib,'RefractionIndex') H=Calib.InterfaceCoord(3); if H>zphys zphys=H-(H-zphys)/Calib.RefractionIndex; %corrected z (virtual object) end end end [XIMA,YIMA]=px_XYZ(CalibIn{icell},X,Y,zphys);% image coordinates for each point in the real space grid XIMA=reshape(round(XIMA),1,npX*npY);%indices reorganized in 'line' YIMA=reshape(round(YIMA),1,npX*npY); flagin=XIMA>=1 & XIMA<=npx(icell) & YIMA >=1 & YIMA<=npy(icell);%flagin=1 inside the original image testuint8=isa(A{icell},'uint8'); testuint16=isa(A{icell},'uint16'); if numel(siz)==2 %(B/W images) vec_A=reshape(A{icell},1,npx(icell)*npy(icell));%put the original image in line %ind_in=find(flagin); ind_out=find(~flagin); ICOMB=((XIMA-1)*npy(icell)+(npy(icell)+1-YIMA)); ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A %vec_B(ind_in)=vec_A(ICOMB); vec_B(flagin)=vec_A(ICOMB); vec_B(~flagin)=zeros(size(ind_out)); % vec_B(ind_out)=zeros(size(ind_out)); A_out{icell}=reshape(vec_B,npY,npX);%new image in real coordinates elseif numel(siz)==3 for icolor=1:siz(3) vec_A=reshape(A{icell}(:,:,icolor),1,npx*npy);%put the original image in line % ind_in=find(flagin); ind_out=find(~flagin); ICOMB=((XIMA-1)*npy+(npy+1-YIMA)); ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A vec_B(flagin)=vec_A(ICOMB); vec_B(~flagin)=zeros(size(ind_out)); A_out{icell}(:,:,icolor)=reshape(vec_B,npy,npx);%new image in real coordinates end end if testuint8 A_out{icell}=uint8(A_out{icell}); end if testuint16 A_out{icell}=uint16(A_out{icell}); end end end