1 | %'phys': transforms image (Unit='pixel') to real world (phys) coordinates using geometric calibration parameters. It acts if the input field contains the tag 'CoordTUnit' with value 'pixel' |
---|
2 | %------------------------------------------------------------------------ |
---|
3 | %%%% Use the general syntax for transform fields %%%% |
---|
4 | % OUTPUT: |
---|
5 | % DataOut: output field structure |
---|
6 | % |
---|
7 | %INPUT: |
---|
8 | % DataIn: first input field structure |
---|
9 | % XmlData: first input parameter structure, |
---|
10 | % .GeometryCalib: substructure of the calibration parameters |
---|
11 | % DataIn_1: optional second input field structure |
---|
12 | % XmlData_1: optional second input parameter structure |
---|
13 | % .GeometryCalib: substructure of the calibration parameters |
---|
14 | |
---|
15 | %======================================================================= |
---|
16 | % Copyright 2008-2014, LEGI UMR 5519 / CNRS UJF G-INP, Grenoble, France |
---|
17 | % http://www.legi.grenoble-inp.fr |
---|
18 | % Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr |
---|
19 | % |
---|
20 | % This file is part of the toolbox UVMAT. |
---|
21 | % |
---|
22 | % UVMAT is free software; you can redistribute it and/or modify |
---|
23 | % it under the terms of the GNU General Public License as published |
---|
24 | % by the Free Software Foundation; either version 2 of the license, |
---|
25 | % or (at your option) any later version. |
---|
26 | % |
---|
27 | % UVMAT is distributed in the hope that it will be useful, |
---|
28 | % but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
29 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
30 | % GNU General Public License (see LICENSE.txt) for more details. |
---|
31 | %======================================================================= |
---|
32 | |
---|
33 | function DataOut=phys(DataIn,XmlData,DataIn_1,XmlData_1) |
---|
34 | %------------------------------------------------------------------------ |
---|
35 | |
---|
36 | % A FAIRE: 1- verifier si DataIn est une 'field structure'(.ListVarName'): |
---|
37 | % chercher ListVarAttribute, for each field (cell of variables): |
---|
38 | % .CoordType: 'phys' or 'px' (default==phys, no transform) |
---|
39 | % .scale_factor: =dt (to transform displacement into velocity) default=1 |
---|
40 | % .covariance: 'scalar', 'coord', 'D_i': covariant (like velocity), 'D^i': contravariant (like gradient), 'D^jD_i' (like strain tensor) |
---|
41 | % (default='coord' if .Role='coord_x,_y..., |
---|
42 | % 'D_i' if '.Role='vector_x,...', |
---|
43 | % 'scalar', else (thenno change except scale factor) |
---|
44 | |
---|
45 | DataOut=[]; |
---|
46 | DataOut_1=[]; %default second output field |
---|
47 | if isfield(DataIn,'Action') && isfield(DataIn.Action,'RUN') && isequal(DataIn.Action.RUN,0) |
---|
48 | if isfield(XmlData,'GeometryCalib')&& isfield(XmlData.GeometryCalib,'CoordUnit') |
---|
49 | DataOut.CoordUnit=XmlData.GeometryCalib.CoordUnit;% states that the output is in unit defined by GeometryCalib, then erased all projection objects with different units |
---|
50 | end |
---|
51 | return |
---|
52 | end |
---|
53 | |
---|
54 | %% analyse input and set default output |
---|
55 | DataOut=DataIn;%default first output field |
---|
56 | if nargin>=2 % nargin =nbre of input variables |
---|
57 | if isfield(XmlData,'GeometryCalib') |
---|
58 | Calib{1}=XmlData.GeometryCalib; |
---|
59 | else |
---|
60 | Calib{1}=[]; |
---|
61 | end |
---|
62 | if nargin>=3 %two input fields |
---|
63 | DataOut_1=DataIn_1;%default second output field |
---|
64 | if nargin>=4 && isfield(XmlData_1,'GeometryCalib') |
---|
65 | Calib{2}=XmlData_1.GeometryCalib; |
---|
66 | else |
---|
67 | Calib{2}=Calib{1}; |
---|
68 | end |
---|
69 | end |
---|
70 | end |
---|
71 | |
---|
72 | %% get the z index defining the section plane |
---|
73 | if isfield(DataIn,'ZIndex')&&~isempty(DataIn.ZIndex)&&~isnan(DataIn.ZIndex) |
---|
74 | ZIndex=DataIn.ZIndex; |
---|
75 | else |
---|
76 | ZIndex=1; |
---|
77 | end |
---|
78 | |
---|
79 | %% transform first field |
---|
80 | iscalar=0;% counter of scalar fields |
---|
81 | if ~isempty(Calib{1}) |
---|
82 | if ~isfield(Calib{1},'CalibrationType')||~isfield(Calib{1},'CoordUnit') |
---|
83 | return %bad calib parameter input |
---|
84 | end |
---|
85 | if ~(isfield(DataIn,'CoordUnit')&& strcmp(DataIn.CoordUnit,'pixel')) |
---|
86 | return % transform only fields in pixel coordinates |
---|
87 | end |
---|
88 | DataOut=phys_1(DataIn,Calib{1},ZIndex);% transform coordiantes and velocity components |
---|
89 | %case of images or scalar: in case of two input fields, we need to project the transform on the same regular grid |
---|
90 | if isfield(DataIn,'A') && isfield(DataIn,'Coord_x') && ~isempty(DataIn.Coord_x) && isfield(DataIn,'Coord_y')&&... |
---|
91 | ~isempty(DataIn.Coord_y) && length(DataIn.A)>1 |
---|
92 | iscalar=1; |
---|
93 | A{1}=DataIn.A; |
---|
94 | end |
---|
95 | end |
---|
96 | |
---|
97 | %% document the selected plane position and angle if relevant |
---|
98 | if isfield(Calib{1},'SliceCoord')&&size(Calib{1}.SliceCoord,1)>=ZIndex |
---|
99 | DataOut.PlaneCoord=Calib{1}.SliceCoord(ZIndex,:);% transfer the slice position corresponding to index ZIndex |
---|
100 | if isfield(Calib{1},'SliceAngle') % transfer the slice rotation angles |
---|
101 | if isequal(size(Calib{1}.SliceAngle,1),1)% case of a unique angle |
---|
102 | DataOut.PlaneAngle=Calib{1}.SliceAngle; |
---|
103 | else % case of multiple planes with different angles: select the plane with index ZIndex |
---|
104 | DataOut.PlaneAngle=Calib{1}.SliceAngle(ZIndex,:); |
---|
105 | end |
---|
106 | end |
---|
107 | end |
---|
108 | |
---|
109 | %% transform second field if relevant |
---|
110 | if ~isempty(DataOut_1) |
---|
111 | if isfield(DataIn_1,'ZIndex') && ~isequal(DataIn_1.ZIndex,ZIndex) |
---|
112 | DataOut_1.Txt='different plane indices for the two input fields'; |
---|
113 | return |
---|
114 | end |
---|
115 | if ~isfield(Calib{2},'CalibrationType')||~isfield(Calib{2},'CoordUnit') |
---|
116 | return %bad calib parameter input |
---|
117 | end |
---|
118 | if ~(isfield(DataIn_1,'CoordUnit')&& strcmp(DataIn_1.CoordUnit,'pixel')) |
---|
119 | return % transform only fields in pixel coordinates |
---|
120 | end |
---|
121 | DataOut_1=phys_1(DataOut_1,Calib{2},ZIndex); |
---|
122 | if isfield(Calib{1},'SliceCoord') |
---|
123 | if ~(isfield(Calib{2},'SliceCoord') && isequal(Calib{2}.SliceCoord,Calib{1}.SliceCoord)) |
---|
124 | DataOut_1.Txt='different plane positions for the two input fields'; |
---|
125 | return |
---|
126 | end |
---|
127 | DataOut_1.PlaneCoord=DataOut.PlaneCoord;% same plane position for the two input fields |
---|
128 | if isfield(Calib{1},'SliceAngle') |
---|
129 | if ~(isfield(Calib{2},'SliceAngle') && isequal(Calib{2}.SliceAngle,Calib{1}.SliceAngle)) |
---|
130 | DataOut_1.Txt='different plane angles for the two input fields'; |
---|
131 | return |
---|
132 | end |
---|
133 | DataOut_1.PlaneAngle=DataOut.PlaneAngle; % same plane angle for the two input fields |
---|
134 | end |
---|
135 | end |
---|
136 | if isfield(DataIn_1,'A')&&isfield(DataIn_1,'Coord_x')&&~isempty(DataIn_1.Coord_x) && isfield(DataIn_1,'Coord_y')&&... |
---|
137 | ~isempty(DataIn_1.Coord_y)&&length(DataIn_1.A)>1 |
---|
138 | iscalar=iscalar+1; |
---|
139 | Calib{iscalar}=Calib{2}; |
---|
140 | A{iscalar}=DataIn_1.A; |
---|
141 | end |
---|
142 | end |
---|
143 | |
---|
144 | %% transform the scalar(s) or image(s) |
---|
145 | if iscalar~=0 |
---|
146 | [A,Coord_x,Coord_y]=phys_Ima(A,Calib,ZIndex);%TODO : introduire interp2_uvmat ds phys_ima |
---|
147 | if iscalar==1 && ~isempty(DataOut_1) % case for which only the second field is a scalar |
---|
148 | DataOut_1.A=A{1}; |
---|
149 | DataOut_1.Coord_x=Coord_x; |
---|
150 | DataOut_1.Coord_y=Coord_y; |
---|
151 | else |
---|
152 | DataOut.A=A{1}; |
---|
153 | DataOut.Coord_x=Coord_x; |
---|
154 | DataOut.Coord_y=Coord_y; |
---|
155 | end |
---|
156 | if iscalar==2 |
---|
157 | DataOut_1.A=A{2}; |
---|
158 | DataOut_1.Coord_x=Coord_x; |
---|
159 | DataOut_1.Coord_y=Coord_y; |
---|
160 | end |
---|
161 | end |
---|
162 | |
---|
163 | % subtract fields |
---|
164 | if ~isempty(DataOut_1) |
---|
165 | DataOut=sub_field(DataOut,[],DataOut_1); |
---|
166 | end |
---|
167 | %------------------------------------------------ |
---|
168 | %--- transform a single field |
---|
169 | function DataOut=phys_1(Data,Calib,ZIndex) |
---|
170 | %------------------------------------------------ |
---|
171 | %% set default output |
---|
172 | DataOut=Data;%default |
---|
173 | DataOut.CoordUnit=Calib.CoordUnit;% the output coord unit is set by the calibration parameters |
---|
174 | |
---|
175 | %% transform X,Y coordinates for velocity fields (transform of an image or scalar done in phys_ima) |
---|
176 | if isfield(Data,'X') &&isfield(Data,'Y')&&~isempty(Data.X) && ~isempty(Data.Y) |
---|
177 | [DataOut.X,DataOut.Y]=phys_XYZ(Calib,Data.X,Data.Y,ZIndex); |
---|
178 | Dt=1; %default |
---|
179 | if isfield(Data,'dt')&&~isempty(Data.dt) |
---|
180 | Dt=Data.dt; |
---|
181 | end |
---|
182 | if isfield(Data,'Dt')&&~isempty(Data.Dt) |
---|
183 | Dt=Data.Dt; |
---|
184 | end |
---|
185 | if isfield(Data,'U')&&isfield(Data,'V')&&~isempty(Data.U) && ~isempty(Data.V) |
---|
186 | [XOut_1,YOut_1]=phys_XYZ(Calib,Data.X-Data.U/2,Data.Y-Data.V/2,ZIndex); |
---|
187 | [XOut_2,YOut_2]=phys_XYZ(Calib,Data.X+Data.U/2,Data.Y+Data.V/2,ZIndex); |
---|
188 | DataOut.U=(XOut_2-XOut_1)/Dt; |
---|
189 | DataOut.V=(YOut_2-YOut_1)/Dt; |
---|
190 | end |
---|
191 | % if ~strcmp(Calib.CalibrationType,'rescale') && isfield(Data,'X_tps') && isfield(Data,'Y_tps') |
---|
192 | % [DataOut.X_tps,DataOut.Y_tps]=phys_XYZ(Calib,Data.X,Data.Y,ZIndex); |
---|
193 | % end |
---|
194 | end |
---|
195 | |
---|
196 | %% suppress tps |
---|
197 | list_tps={'Coord_tps' 'U_tps' 'V_tps' 'SubRange' 'NbSites'}; |
---|
198 | ind_remove=[]; |
---|
199 | for ilist=1:numel(list_tps) |
---|
200 | ind_tps=find(strcmp(list_tps{ilist},Data.ListVarName)); |
---|
201 | if ~isempty(ind_tps) |
---|
202 | ind_remove=[ind_remove ind_tps]; |
---|
203 | DataOut=rmfield(DataOut,list_tps{ilist}); |
---|
204 | end |
---|
205 | end |
---|
206 | if isfield(DataOut,'VarAttribute') && numel(DataOut.VarAttribute)>=3 && isfield(DataOut.VarAttribute{3},'VarIndex_tps') |
---|
207 | DataOut.VarAttribute{3}=rmfield(DataOut.VarAttribute{3},'VarIndex_tps'); |
---|
208 | end |
---|
209 | if isfield(DataOut,'VarAttribute')&& numel(DataOut.VarAttribute)>=4 && isfield(DataOut.VarAttribute{4},'VarIndex_tps') |
---|
210 | DataOut.VarAttribute{4}=rmfield(DataOut.VarAttribute{4},'VarIndex_tps'); |
---|
211 | end |
---|
212 | if ~isempty(ind_remove) |
---|
213 | DataOut.ListVarName(ind_remove)=[]; |
---|
214 | DataOut.VarDimName(ind_remove)=[]; |
---|
215 | DataOut.VarAttribute(ind_remove)=[]; |
---|
216 | end |
---|
217 | |
---|
218 | %% transform of spatial derivatives: TODO check the case with plane angles |
---|
219 | if isfield(Data,'X') && ~isempty(Data.X) && isfield(Data,'DjUi') && ~isempty(Data.DjUi) |
---|
220 | % estimate the Jacobian matrix DXpx/DXphys |
---|
221 | for ip=1:length(Data.X) |
---|
222 | [Xp1,Yp1]=phys_XYZ(Calib,Data.X(ip)+0.5,Data.Y(ip),ZIndex); |
---|
223 | [Xm1,Ym1]=phys_XYZ(Calib,Data.X(ip)-0.5,Data.Y(ip),ZIndex); |
---|
224 | [Xp2,Yp2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)+0.5,ZIndex); |
---|
225 | [Xm2,Ym2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)-0.5,ZIndex); |
---|
226 | %Jacobian matrix DXpphys/DXpx |
---|
227 | DjXi(1,1)=(Xp1-Xm1); |
---|
228 | DjXi(2,1)=(Yp1-Ym1); |
---|
229 | DjXi(1,2)=(Xp2-Xm2); |
---|
230 | DjXi(2,2)=(Yp2-Ym2); |
---|
231 | DjUi(:,:)=Data.DjUi(ip,:,:); |
---|
232 | DjUi=(DjXi*DjUi')/DjXi;% =J-1*M*J , curvature effects (derivatives of J) neglected |
---|
233 | DataOut.DjUi(ip,:,:)=DjUi'; |
---|
234 | end |
---|
235 | DataOut.DjUi = DataOut.DjUi/Dt; % min(Data.DjUi(:,1,1))=DUDX |
---|
236 | end |
---|
237 | |
---|
238 | |
---|
239 | %%%%%%%%%%%%%%%%%%%% |
---|
240 | function [A_out,Rangx,Rangy]=phys_Ima(A,CalibIn,ZIndex) |
---|
241 | xcorner=[]; |
---|
242 | ycorner=[]; |
---|
243 | npx=[]; |
---|
244 | npy=[]; |
---|
245 | dx=ones(1,numel(A)); |
---|
246 | dy=ones(1,numel(A)); |
---|
247 | for icell=1:numel(A) |
---|
248 | siz=size(A{icell}); |
---|
249 | npx=[npx siz(2)]; |
---|
250 | npy=[npy siz(1)]; |
---|
251 | Calib=CalibIn{icell}; |
---|
252 | xima=[0.5 siz(2)-0.5 0.5 siz(2)-0.5];%image coordinates of corners |
---|
253 | yima=[0.5 0.5 siz(1)-0.5 siz(1)-0.5]; |
---|
254 | [xcorner_new,ycorner_new]=phys_XYZ(Calib,xima,yima,ZIndex);%corresponding physical coordinates |
---|
255 | dx(icell)=(max(xcorner_new)-min(xcorner_new))/(siz(2)-1); |
---|
256 | dy(icell)=(max(ycorner_new)-min(ycorner_new))/(siz(1)-1); |
---|
257 | xcorner=[xcorner xcorner_new]; |
---|
258 | ycorner=[ycorner ycorner_new]; |
---|
259 | end |
---|
260 | Rangx(1)=min(xcorner); |
---|
261 | Rangx(2)=max(xcorner); |
---|
262 | Rangy(2)=min(ycorner); |
---|
263 | Rangy(1)=max(ycorner); |
---|
264 | test_multi=(max(npx)~=min(npx)) || (max(npy)~=min(npy)); %different image lengths |
---|
265 | npX=1+round((Rangx(2)-Rangx(1))/min(dx));% nbre of pixels in the new image (use the finest resolution min(dx) in the set of images) |
---|
266 | npY=1+round((Rangy(1)-Rangy(2))/min(dy)); |
---|
267 | x=linspace(Rangx(1),Rangx(2),npX); |
---|
268 | y=linspace(Rangy(1),Rangy(2),npY); |
---|
269 | [X,Y]=meshgrid(x,y);%grid in physical coordiantes |
---|
270 | %vec_B=[]; |
---|
271 | A_out=cell(1,numel(A)); |
---|
272 | for icell=1:length(A) |
---|
273 | Calib=CalibIn{icell}; |
---|
274 | % rescaling of the image coordinates without change of the image array |
---|
275 | if strcmp(Calib.CalibrationType,'rescale') && isequal(Calib,CalibIn{1}) |
---|
276 | A_out{icell}=A{icell};%no transform |
---|
277 | Rangx=[0.5 npx-0.5];%image coordiantes of corners |
---|
278 | Rangy=[npy-0.5 0.5]; |
---|
279 | [Rangx]=phys_XYZ(Calib,Rangx,[0.5 0.5],ZIndex);%case of translations without rotation and quadratic deformation |
---|
280 | [xx,Rangy]=phys_XYZ(Calib,[0.5 0.5],Rangy,ZIndex); |
---|
281 | else |
---|
282 | % the image needs to be interpolated to the new coordinates |
---|
283 | zphys=0; %default |
---|
284 | if isfield(Calib,'SliceCoord') %.Z= index of plane |
---|
285 | SliceCoord=Calib.SliceCoord(ZIndex,:); |
---|
286 | zphys=SliceCoord(3); %to generalize for non-parallel planes |
---|
287 | if isfield(Calib,'InterfaceCoord') && isfield(Calib,'RefractionIndex') |
---|
288 | H=Calib.InterfaceCoord(3); |
---|
289 | if H>zphys |
---|
290 | zphys=H-(H-zphys)/Calib.RefractionIndex; %corrected z (virtual object) |
---|
291 | end |
---|
292 | end |
---|
293 | end |
---|
294 | xima=0.5:npx-0.5;%image coordinates of corners |
---|
295 | yima=npy-0.5:-1:0.5; |
---|
296 | [XIMA_init,YIMA_init]=meshgrid(xima,yima);%grid of initial image in px coordinates |
---|
297 | [XIMA,YIMA]=px_XYZ(CalibIn{icell},X,Y,zphys);% image coordinates for each point in the real |
---|
298 | %[XPHYS_init,YPHYS_init]=phys_XYZ(Calib,XIMA_init,YIMA_init,ZIndex); |
---|
299 | testuint8=isa(A{icell},'uint8'); |
---|
300 | testuint16=isa(A{icell},'uint16'); |
---|
301 | if ndims(A{icell})==2 %(B/W images) |
---|
302 | A_out{icell}=interp2(XIMA_init,YIMA_init,double(A{icell}),XIMA,YIMA); |
---|
303 | % [Rangx]=phys_XYZ(Calib,Rangx,[0.5 0.5],ZIndex);%case of translations without rotation and quadratic deformation |
---|
304 | % [XIMA_init,YIMA_init]=px_XYZ(CalibIn{icell},X,Y,zphys);% image coordinates for each point in the real space grid |
---|
305 | % |
---|
306 | % XIMA=reshape(round(XIMA),1,npX*npY);%indices reorganized in 'line' |
---|
307 | % YIMA=reshape(round(YIMA),1,npX*npY); |
---|
308 | % flagin=XIMA>=1 & XIMA<=npx(icell) & YIMA >=1 & YIMA<=npy(icell);%flagin=1 inside the original image |
---|
309 | |
---|
310 | % if numel(siz)==2 %(B/W images) |
---|
311 | % vec_A=reshape(A{icell},1,npx(icell)*npy(icell));%put the original image in line |
---|
312 | % %ind_in=find(flagin); |
---|
313 | % ind_out=find(~flagin); |
---|
314 | % ICOMB=((XIMA-1)*npy(icell)+(npy(icell)+1-YIMA)); |
---|
315 | % ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A |
---|
316 | % %vec_B(ind_in)=vec_A(ICOMB); |
---|
317 | % vec_B(flagin)=vec_A(ICOMB); |
---|
318 | % vec_B(~flagin)=zeros(size(ind_out)); |
---|
319 | % % vec_B(ind_out)=zeros(size(ind_out)); |
---|
320 | % A_out{icell}=reshape(vec_B,npY,npX);%new image in real coordinates |
---|
321 | elseif ndims(A{icell})==3 |
---|
322 | for icolor=1:size(A{icell},3) |
---|
323 | A{icell}=double(A{icell}); |
---|
324 | A_out{icell}(:,:,icolor)=interp2(XIMA_init,YIMA_init,A{icell}(:,:,icolor),XIMA,YIMA); |
---|
325 | % vec_A=reshape(A{icell}(:,:,icolor),1,npx*npy);%put the original image in line |
---|
326 | % % ind_in=find(flagin); |
---|
327 | % ind_out=find(~flagin); |
---|
328 | % ICOMB=((XIMA-1)*npy+(npy+1-YIMA)); |
---|
329 | % ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A |
---|
330 | % vec_B(flagin)=vec_A(ICOMB); |
---|
331 | % vec_B(~flagin)=zeros(size(ind_out)); |
---|
332 | % A_out{icell}(:,:,icolor)=reshape(vec_B,npy,npx);%new image in real coordinates |
---|
333 | end |
---|
334 | end |
---|
335 | if testuint8 |
---|
336 | A_out{icell}=uint8(A_out{icell}); |
---|
337 | end |
---|
338 | if testuint16 |
---|
339 | A_out{icell}=uint16(A_out{icell}); |
---|
340 | end |
---|
341 | end |
---|
342 | end |
---|
343 | |
---|