[40] | 1 | %transform image coordinates (px) to physical coordinates
|
---|
| 2 | % then transform to polar coordinates:
|
---|
| 3 | %[DataOut,DataOut_1]=phys_polar(varargin)
|
---|
| 4 | %
|
---|
| 5 | % OUTPUT:
|
---|
| 6 | % DataOut: structure of modified data field: .X=radius, .Y=azimuth angle, .U, .V are radial and azimuthal velocity components
|
---|
| 7 | % DataOut_1: second data field (if two fields are in input)
|
---|
| 8 | %
|
---|
| 9 | %INPUT:
|
---|
| 10 | % Data: structure of input data (like UvData)
|
---|
| 11 | % CalibData= structure containing the field .GeometryCalib with calibration parameters
|
---|
| 12 | % Data_1: second input field (not mandatory)
|
---|
| 13 | % CalibData_1= calibration parameters for the second field
|
---|
| 14 |
|
---|
| 15 | function [DataOut,DataOut_1]=phys_polar(varargin)
|
---|
| 16 | Calib{1}=[];
|
---|
| 17 | if nargin==2||nargin==4
|
---|
| 18 | Data=varargin{1};
|
---|
| 19 | DataOut=Data;%default
|
---|
| 20 | DataOut_1=[];%default
|
---|
| 21 | CalibData=varargin{2};
|
---|
| 22 | if isfield(CalibData,'GeometryCalib')
|
---|
| 23 | Calib{1}=CalibData.GeometryCalib;
|
---|
| 24 | end
|
---|
| 25 | Calib{2}=Calib{1};
|
---|
| 26 | else
|
---|
| 27 | DataOut.Txt='wrong input: need two or four structures';
|
---|
| 28 | end
|
---|
| 29 | test_1=0;
|
---|
[93] | 30 | if nargin==4% case of two input fields
|
---|
[40] | 31 | test_1=1;
|
---|
| 32 | Data_1=varargin{3};
|
---|
| 33 | DataOut_1=Data_1;%default
|
---|
| 34 | CalibData_1=varargin{4};
|
---|
| 35 | if isfield(CalibData_1,'GeometryCalib')
|
---|
| 36 | Calib{2}=CalibData_1.GeometryCalib;
|
---|
| 37 | end
|
---|
| 38 | end
|
---|
| 39 |
|
---|
| 40 | %parameters for polar coordinates (taken from the calibration data of the first field)
|
---|
| 41 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
| 42 | origin_xy=[0 0];%center for the polar coordinates in the original x,y coordinates
|
---|
| 43 | if isfield(Calib{1},'PolarCentre') && isnumeric(Calib{1}.PolarCentre)
|
---|
| 44 | if isequal(length(Calib{1}.PolarCentre),2);
|
---|
| 45 | origin_xy= Calib{1}.PolarCentre;
|
---|
| 46 | end
|
---|
| 47 | end
|
---|
| 48 | radius_offset=0;%reference radius used to offset the radial coordinate r
|
---|
| 49 | angle_offset=0; %reference angle used as new origin of the polar angle (= axis Ox by default)
|
---|
| 50 | if isfield(Calib{1},'PolarReferenceRadius') && isnumeric(Calib{1}.PolarReferenceRadius)
|
---|
| 51 | radius_offset=Calib{1}.PolarReferenceRadius;
|
---|
| 52 | end
|
---|
| 53 | if radius_offset > 0
|
---|
| 54 | angle_scale=radius_offset; %the azimuth is rescale in terms of the length along the reference radius
|
---|
| 55 | else
|
---|
| 56 | angle_scale=180/pi; %polar angle in degrees
|
---|
| 57 | end
|
---|
| 58 | if isfield(Calib{1},'PolarReferenceAngle') && isnumeric(Calib{1}.PolarReferenceAngle)
|
---|
| 59 | angle_offset=Calib{1}.PolarReferenceAngle; %offset angle (in unit of the final angle, degrees or arc length along the reference radius))
|
---|
| 60 | end
|
---|
| 61 | % new x coordinate = radius-radius_offset;
|
---|
| 62 | % new y coordinate = theta*angle_scale-angle_offset
|
---|
| 63 |
|
---|
| 64 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
| 65 |
|
---|
| 66 | iscalar=0;
|
---|
[93] | 67 | %transform first field to cartesian phys coordiantes
|
---|
[40] | 68 | if ~isempty(Calib{1})
|
---|
| 69 | DataOut=phys_1(Data,Calib{1},origin_xy,radius_offset,angle_offset,angle_scale);
|
---|
| 70 | %case of images or scalar
|
---|
| 71 | if isfield(Data,'A')&isfield(Data,'AX')&~isempty(Data.AX) & isfield(Data,'AY')&...
|
---|
| 72 | ~isempty(Data.AY)&length(Data.A)>1
|
---|
| 73 | iscalar=1;
|
---|
| 74 | A{1}=Data.A;
|
---|
| 75 | end
|
---|
| 76 | %transform of X,Y coordinates for vector fields
|
---|
| 77 | if isfield(Data,'ZIndex')&~isempty(Data.ZIndex)
|
---|
| 78 | ZIndex=Data.ZIndex;
|
---|
| 79 | else
|
---|
| 80 | ZIndex=0;
|
---|
| 81 | end
|
---|
| 82 | end
|
---|
[93] | 83 | %transform second field (if exists) to cartesian phys coordiantes
|
---|
[40] | 84 | if test_1
|
---|
| 85 | DataOut_1=phys_1(Data_1,Calib{2},origin_xy,radius_offset,angle_offset,angle_scale);
|
---|
| 86 | if isfield(Data_1,'A')&isfield(Data_1,'AX')&~isempty(Data_1.AX) & isfield(Data_1,'AY')&...
|
---|
| 87 | ~isempty(Data_1.AY)&length(Data_1.A)>1
|
---|
| 88 | iscalar=iscalar+1;
|
---|
| 89 | Calib{iscalar}=Calib{2};
|
---|
| 90 | A{iscalar}=Data_1.A;
|
---|
| 91 | if isfield(Data_1,'ZIndex')&~isequal(Data_1.ZIndex,ZIndex)
|
---|
| 92 | DataOut.Txt='inconsistent plane indexes in the two input fields';
|
---|
| 93 | end
|
---|
| 94 | if iscalar==1% case for which only the second field is a scalar
|
---|
| 95 | [A,AX,AY]=phys_Ima(A,Calib,ZIndex,origin_xy,radius_offset,angle_offset,angle_scale);
|
---|
| 96 | DataOut_1.A=A{1};
|
---|
| 97 | DataOut_1.AX=AX;
|
---|
| 98 | DataOut_1.AY=AY;
|
---|
| 99 | return
|
---|
| 100 | end
|
---|
| 101 | end
|
---|
| 102 | end
|
---|
| 103 | if iscalar~=0
|
---|
| 104 | [A,AX,AY]=phys_Ima(A,Calib,ZIndex,origin_xy,radius_offset,angle_offset,angle_scale);%
|
---|
| 105 | DataOut.A=A{1};
|
---|
| 106 | DataOut.AX=AX;
|
---|
| 107 | DataOut.AY=AY;
|
---|
| 108 | if iscalar==2
|
---|
| 109 | DataOut_1.A=A{2};
|
---|
| 110 | DataOut_1.AX=AX;
|
---|
| 111 | DataOut_1.AY=AY;
|
---|
| 112 | end
|
---|
| 113 | end
|
---|
| 114 |
|
---|
| 115 | %------------------------------------------------
|
---|
| 116 | function DataOut=phys_1(Data,Calib,origin_xy,radius_offset,angle_offset,angle_scale)
|
---|
| 117 |
|
---|
| 118 | DataOut=Data;
|
---|
| 119 | DataOut.CoordType='phys'; %put flag for physical coordinates
|
---|
| 120 | if isfield(Calib,'CoordUnit')
|
---|
| 121 | DataOut.CoordUnit=Calib.CoordUnit;
|
---|
| 122 | else
|
---|
| 123 | DataOut.CoordUnit='cm'; %default
|
---|
| 124 | end
|
---|
| 125 | DataOut.TimeUnit='s';
|
---|
| 126 | %perform a geometry transform if Calib contains a field .GeometryCalib
|
---|
| 127 | if isfield(Data,'CoordType') && isequal(Data.CoordType,'px') && ~isempty(Calib)
|
---|
| 128 | if isfield(Data,'CoordUnit')
|
---|
| 129 | DataOut=rmfield(DataOut,'CoordUnit');
|
---|
| 130 | end
|
---|
| 131 | %transform of X,Y coordinates for vector fields
|
---|
| 132 | if isfield(Data,'ZIndex')&~isempty(Data.ZIndex)
|
---|
| 133 | Z=Data.ZIndex;
|
---|
| 134 | else
|
---|
| 135 | Z=0;
|
---|
| 136 | end
|
---|
| 137 | if isfield(Data,'X') &isfield(Data,'Y')&~isempty(Data.X) & ~isempty(Data.Y)
|
---|
| 138 | [DataOut.X,DataOut.Y,DataOut.Z]=phys_XYZ(Calib,Data.X,Data.Y,Z); %transform from pixels to physical
|
---|
| 139 | DataOut.X=DataOut.X-origin_xy(1);%origin of coordinates at the tank center
|
---|
| 140 | DataOut.Y=DataOut.Y-origin_xy(2);%origin of coordinates at the tank center
|
---|
| 141 | [theta,DataOut.X] = cart2pol(DataOut.X,DataOut.Y);%theta and X are the polar coordinates angle and radius
|
---|
| 142 | %shift and renormalize the polar coordinates
|
---|
| 143 | DataOut.X=DataOut.X-radius_offset;%
|
---|
| 144 | DataOut.Y=theta*angle_scale-angle_offset;% normalized angle: distance along reference radius
|
---|
| 145 | %transform velocity field if exists
|
---|
| 146 | if isfield(Data,'U')&isfield(Data,'V')&~isempty(Data.U) & ~isempty(Data.V)& isfield(Data,'dt')
|
---|
| 147 | if ~isempty(Data.dt)
|
---|
| 148 | [XOut_1,YOut_1]=phys_XYZ(Calib,Data.X-Data.U/2,Data.Y-Data.V/2,Z);
|
---|
| 149 | [XOut_2,YOut_2]=phys_XYZ(Calib,Data.X+Data.U/2,Data.Y+Data.V/2,Z);
|
---|
| 150 | UX=(XOut_2-XOut_1)/Data.dt;
|
---|
| 151 | VY=(YOut_2-YOut_1)/Data.dt;
|
---|
| 152 | %transform u,v into polar coordiantes
|
---|
| 153 | DataOut.U=UX.*cos(theta)+VY.*sin(theta);%radial velocity
|
---|
| 154 | DataOut.V=(-UX.*sin(theta)+VY.*cos(theta));%./(DataOut.X)%+radius_ref);%angular velocity calculated
|
---|
| 155 | %shift and renormalize the angular velocity
|
---|
| 156 | end
|
---|
| 157 | end
|
---|
[93] | 158 | %transform of spatial derivatives
|
---|
| 159 | if isfield(Data,'X') && ~isempty(Data.X) && isfield(Data,'DjUi') && ~isempty(Data.DjUi)...
|
---|
| 160 | && isfield(Data,'dt')
|
---|
| 161 | if ~isempty(Data.dt)
|
---|
| 162 | % estimate the Jacobian matrix DXpx/DXphys
|
---|
| 163 | for ip=1:length(Data.X)
|
---|
| 164 | [Xp1,Yp1]=phys_XYZ(Calib,Data.X(ip)+0.5,Data.Y(ip),Z);
|
---|
| 165 | [Xm1,Ym1]=phys_XYZ(Calib,Data.X(ip)-0.5,Data.Y(ip),Z);
|
---|
| 166 | [Xp2,Yp2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)+0.5,Z);
|
---|
| 167 | [Xm2,Ym2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)-0.5,Z);
|
---|
| 168 | %Jacobian matrix DXpphys/DXpx
|
---|
| 169 | DjXi(1,1)=(Xp1-Xm1);
|
---|
| 170 | DjXi(2,1)=(Yp1-Ym1);
|
---|
| 171 | DjXi(1,2)=(Xp2-Xm2);
|
---|
| 172 | DjXi(2,2)=(Yp2-Ym2);
|
---|
| 173 | DjUi(:,:)=Data.DjUi(ip,:,:);
|
---|
| 174 | DjUi=(DjXi*DjUi')/DjXi;% =J-1*M*J , curvature effects (derivatives of J) neglected
|
---|
| 175 | DataOut.DjUi(ip,:,:)=DjUi';
|
---|
| 176 | end
|
---|
| 177 | DataOut.DjUi = DataOut.DjUi/Data.dt; % min(Data.DjUi(:,1,1))=DUDX
|
---|
| 178 | end
|
---|
| 179 | end
|
---|
[40] | 180 | end
|
---|
| 181 | end
|
---|
| 182 |
|
---|
| 183 |
|
---|
| 184 | %%%%%%%%%%%%%%%%%%%%
|
---|
| 185 | function [A_out,Rangx,Rangy]=phys_Ima(A,CalibIn,ZIndex,origin_xy,radius_offset,angle_offset,angle_scale)
|
---|
| 186 | xcorner=[];
|
---|
| 187 | ycorner=[];
|
---|
| 188 | npx=[];
|
---|
| 189 | npy=[];
|
---|
| 190 |
|
---|
| 191 | for icell=1:length(A)
|
---|
| 192 | siz=size(A{icell});
|
---|
| 193 | npx=[npx siz(2)];
|
---|
| 194 | npy=[npy siz(1)];
|
---|
| 195 | zphys=0; %default
|
---|
| 196 | if isfield(CalibIn{icell},'SliceCoord') %.Z= index of plane
|
---|
| 197 | SliceCoord=CalibIn{icell}.SliceCoord(ZIndex,:);
|
---|
| 198 | zphys=SliceCoord(3); %to generalize for non-parallel planes
|
---|
| 199 | end
|
---|
| 200 | xima=[0.5 siz(2)-0.5 0.5 siz(2)-0.5];%image coordiantes of corners
|
---|
| 201 | yima=[0.5 0.5 siz(1)-0.5 siz(1)-0.5];
|
---|
| 202 | [xcorner_new,ycorner_new]=phys_XYZ(CalibIn{icell},xima,yima,ZIndex);%corresponding physical coordinates
|
---|
| 203 | %transform the corner coordinates into polar ones
|
---|
| 204 | xcorner_new=xcorner_new-origin_xy(1);%shift to the origin of the polar coordinates
|
---|
| 205 | ycorner_new=ycorner_new-origin_xy(2);%shift to the origin of the polar coordinates
|
---|
| 206 | [theta,xcorner_new] = cart2pol(xcorner_new,ycorner_new);%theta and X are the polar coordinates angle and radius
|
---|
| 207 | if (max(theta)-min(theta))>pi %if the polar origin is inside the image
|
---|
| 208 | xcorner_new=[0 max(xcorner_new)];
|
---|
| 209 | theta=[-pi pi];
|
---|
| 210 | end
|
---|
| 211 | %shift and renormalize the polar coordinates
|
---|
| 212 | xcorner_new=xcorner_new-radius_offset;%
|
---|
| 213 | ycorner_new=theta*angle_scale-angle_offset;% normalized angle: distance along reference radius
|
---|
| 214 | xcorner=[xcorner xcorner_new];
|
---|
| 215 | ycorner=[ycorner ycorner_new];
|
---|
| 216 | end
|
---|
| 217 | Rangx(1)=min(xcorner);
|
---|
| 218 | Rangx(2)=max(xcorner);
|
---|
| 219 | Rangy(2)=min(ycorner);
|
---|
| 220 | Rangy(1)=max(ycorner);
|
---|
| 221 | % test_multi=(max(npx)~=min(npx)) | (max(npy)~=min(npy));
|
---|
| 222 | npx=max(npx);
|
---|
| 223 | npy=max(npy);
|
---|
| 224 | x=linspace(Rangx(1),Rangx(2),npx);
|
---|
| 225 | y=linspace(Rangy(1),Rangy(2),npy);
|
---|
| 226 | [X,Y]=meshgrid(x,y);%grid in physical coordinates
|
---|
| 227 | %transform X, Y in cartesian
|
---|
| 228 | X=X+radius_offset;%
|
---|
| 229 | Y=(Y+angle_offset)/angle_scale;% normalized angle: distance along reference radius
|
---|
| 230 | [X,Y] = pol2cart(Y,X);
|
---|
| 231 | X=X+origin_xy(1);%shift to the origin of the polar coordinates
|
---|
| 232 | Y=Y+origin_xy(2);%shift to the origin of the polar coordinates
|
---|
| 233 | for icell=1:length(A)
|
---|
| 234 | [XIMA,YIMA]=px_XYZ(CalibIn{icell},X,Y,zphys);%corresponding image indices for each point in the real space grid
|
---|
| 235 | XIMA=reshape(round(XIMA),1,npx*npy);%indices reorganized in 'line'
|
---|
| 236 | YIMA=reshape(round(YIMA),1,npx*npy);
|
---|
| 237 | flagin=XIMA>=1 & XIMA<=npx & YIMA >=1 & YIMA<=npy;%flagin=1 inside the original image
|
---|
| 238 | vec_A=reshape(A{icell}(:,:,1),1,npx*npy);%put the original image in line
|
---|
| 239 | ind_in=find(flagin);
|
---|
| 240 | ind_out=find(~flagin);
|
---|
| 241 | ICOMB=((XIMA-1)*npy+(npy+1-YIMA));
|
---|
| 242 | ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A
|
---|
| 243 | vec_B(ind_in)=vec_A(ICOMB);
|
---|
| 244 | vec_B(ind_out)=zeros(size(ind_out));
|
---|
| 245 | A_out{icell}=reshape(vec_B,npy,npx);%new image in real coordinates
|
---|
| 246 | end
|
---|
| 247 | %Rangx=Rangx-radius_offset;
|
---|
| 248 |
|
---|
| 249 | %'phys_XYZ':transforms image (px) to real world (phys) coordinates using geometric calibration parameters
|
---|
| 250 | % function [Xphys,Yphys]=phys_XYZ(Calib,X,Y,Z)
|
---|
| 251 | %
|
---|
| 252 | %OUTPUT:
|
---|
| 253 | %
|
---|
| 254 | %INPUT:
|
---|
| 255 | %Z: index of plane
|
---|
| 256 | function [Xphys,Yphys,Zphys]=phys_XYZ(Calib,X,Y,Z)
|
---|
| 257 | if exist('Z','var')& isequal(Z,round(Z))& Z>0 & isfield(Calib,'SliceCoord')&length(Calib.SliceCoord)>=Z
|
---|
| 258 | Zindex=Z;
|
---|
| 259 | Zphys=Calib.SliceCoord(Zindex,3);%GENERALISER AUX CAS AVEC ANGLE
|
---|
| 260 | else
|
---|
| 261 | % if exist('Z','var')
|
---|
| 262 | % Zphys=Z;
|
---|
| 263 | % else
|
---|
| 264 | Zphys=0;
|
---|
| 265 | % end
|
---|
| 266 | end
|
---|
| 267 | if ~exist('X','var')||~exist('Y','var')
|
---|
| 268 | Xphys=[];
|
---|
| 269 | Yphys=[];%default
|
---|
| 270 | return
|
---|
| 271 | end
|
---|
| 272 | Xphys=X;%default
|
---|
| 273 | Yphys=Y;
|
---|
| 274 | %image transform
|
---|
| 275 | if isfield(Calib,'R')
|
---|
| 276 | R=(Calib.R)';
|
---|
| 277 | Dx=R(5)*R(7)-R(4)*R(8);
|
---|
| 278 | Dy=R(1)*R(8)-R(2)*R(7);
|
---|
| 279 | D0=Calib.f*(R(2)*R(4)-R(1)*R(5));
|
---|
| 280 | Z11=R(6)*R(8)-R(5)*R(9);
|
---|
| 281 | Z12=R(2)*R(9)-R(3)*R(8);
|
---|
| 282 | Z21=R(4)*R(9)-R(6)*R(7);
|
---|
| 283 | Z22=R(3)*R(7)-R(1)*R(9);
|
---|
| 284 | Zx0=R(3)*R(5)-R(2)*R(6);
|
---|
| 285 | Zy0=R(1)*R(6)-R(3)*R(4);
|
---|
| 286 | A11=R(8)*Calib.Ty-R(5)*Calib.Tz+Z11*Zphys;
|
---|
| 287 | A12=R(2)*Calib.Tz-R(8)*Calib.Tx+Z12*Zphys;
|
---|
| 288 | A21=-R(7)*Calib.Ty+R(4)*Calib.Tz+Z21*Zphys;
|
---|
| 289 | A22=-R(1)*Calib.Tz+R(7)*Calib.Tx+Z11*Zphys;
|
---|
| 290 | X0=Calib.f*(R(5)*Calib.Tx-R(2)*Calib.Ty+Zx0*Zphys);
|
---|
| 291 | Y0=Calib.f*(-R(4)*Calib.Tx+R(1)*Calib.Ty+Zy0*Zphys);
|
---|
| 292 | %px to camera:
|
---|
| 293 | Xd=(Calib.dpx/Calib.sx)*(X-Calib.Cx); % sensor coordinates
|
---|
| 294 | Yd=Calib.dpy*(Y-Calib.Cy);
|
---|
| 295 | dist_fact=1+Calib.kappa1*(Xd.*Xd+Yd.*Yd); %distortion factor
|
---|
| 296 | Xu=dist_fact.*Xd;%undistorted sensor coordinates
|
---|
| 297 | Yu=dist_fact.*Yd;
|
---|
| 298 | denom=Dx*Xu+Dy*Yu+D0;
|
---|
| 299 | % denom2=denom.*denom;
|
---|
| 300 | Xphys=(A11.*Xu+A12.*Yu+X0)./denom;%world coordinates
|
---|
| 301 | Yphys=(A21.*Xu+A22.*Yu+Y0)./denom;
|
---|
| 302 | end
|
---|
| 303 |
|
---|
| 304 | %'px_XYZ': transform phys coordinates to image coordinates (px)
|
---|
| 305 | %
|
---|
| 306 | % OUPUT:
|
---|
| 307 | % X,Y: array of coordinates in the image cooresponding to the input physical positions
|
---|
| 308 | % (origin at lower leftcorner, unit=pixel)
|
---|
| 309 |
|
---|
| 310 | % INPUT:
|
---|
| 311 | % Calib: structure containing the calibration parameters (read from the ImaDoc .xml file)
|
---|
| 312 | % Xphys, Yphys: array of x,y physical coordinates
|
---|
| 313 | % [Zphys]: corresponding array of z physical coordinates (0 by default)
|
---|
| 314 |
|
---|
| 315 |
|
---|
| 316 | function [X,Y]=px_XYZ(Calib,Xphys,Yphys,Zphys)
|
---|
| 317 | X=[];%default
|
---|
| 318 | Y=[];
|
---|
| 319 | % if exist('Z','var')& isequal(Z,round(Z))& Z>0 & isfield(Calib,'PlanePos')&length(Calib.PlanePos)>=Z
|
---|
| 320 | % Zindex=Z;
|
---|
| 321 | % planepos=Calib.PlanePos{Zindex};
|
---|
| 322 | % zphys=planepos(3);%A GENERALISER CAS AVEC ANGLE
|
---|
| 323 | % else
|
---|
| 324 | % zphys=0;
|
---|
| 325 | % end
|
---|
| 326 | if ~exist('Zphys','var')
|
---|
| 327 | Zphys=0;
|
---|
| 328 | end
|
---|
| 329 |
|
---|
| 330 | %%%%%%%%%%%%%
|
---|
| 331 | if isfield(Calib,'R')
|
---|
| 332 | R=(Calib.R)';
|
---|
| 333 | xc=R(1)*Xphys+R(2)*Yphys+R(3)*Zphys+Calib.Tx;
|
---|
| 334 | yc=R(4)*Xphys+R(5)*Yphys+R(6)*Zphys+Calib.Ty;
|
---|
| 335 | zc=R(7)*Xphys+R(8)*Yphys+R(9)*Zphys+Calib.Tz;
|
---|
| 336 | %undistorted image coordinates
|
---|
| 337 | Xu=Calib.f*xc./zc;
|
---|
| 338 | Yu=Calib.f*yc./zc;
|
---|
| 339 | %distorted image coordinates
|
---|
| 340 | distortion=(Calib.kappa1)*(Xu.*Xu+Yu.*Yu)+1; %A REVOIR
|
---|
| 341 | % distortion=1;
|
---|
| 342 | Xd=Xu./distortion;
|
---|
| 343 | Yd=Yu./distortion;
|
---|
| 344 | %pixel coordinates
|
---|
| 345 | X=Xd*Calib.sx/Calib.dpx+Calib.Cx;
|
---|
| 346 | Y=Yd/Calib.dpy+Calib.Cy;
|
---|
| 347 |
|
---|
| 348 | elseif isfield(Calib,'Pxcmx')&isfield(Calib,'Pxcmy')%old calib
|
---|
| 349 | X=Xphys*Calib.Pxcmx;
|
---|
| 350 | Y=Yphys*Calib.Pxcmy;
|
---|
| 351 | end
|
---|
| 352 |
|
---|
| 353 |
|
---|