[172] | 1 | % transform image coordinates (px) to polar physical coordinates
|
---|
[40] | 2 | %[DataOut,DataOut_1]=phys_polar(varargin)
|
---|
| 3 | %
|
---|
| 4 | % OUTPUT:
|
---|
| 5 | % DataOut: structure of modified data field: .X=radius, .Y=azimuth angle, .U, .V are radial and azimuthal velocity components
|
---|
| 6 | % DataOut_1: second data field (if two fields are in input)
|
---|
| 7 | %
|
---|
| 8 | %INPUT:
|
---|
| 9 | % Data: structure of input data (like UvData)
|
---|
| 10 | % CalibData= structure containing the field .GeometryCalib with calibration parameters
|
---|
| 11 | % Data_1: second input field (not mandatory)
|
---|
| 12 | % CalibData_1= calibration parameters for the second field
|
---|
| 13 |
|
---|
| 14 | function [DataOut,DataOut_1]=phys_polar(varargin)
|
---|
| 15 | Calib{1}=[];
|
---|
| 16 | if nargin==2||nargin==4
|
---|
| 17 | Data=varargin{1};
|
---|
| 18 | DataOut=Data;%default
|
---|
| 19 | DataOut_1=[];%default
|
---|
| 20 | CalibData=varargin{2};
|
---|
| 21 | if isfield(CalibData,'GeometryCalib')
|
---|
| 22 | Calib{1}=CalibData.GeometryCalib;
|
---|
| 23 | end
|
---|
| 24 | Calib{2}=Calib{1};
|
---|
| 25 | else
|
---|
| 26 | DataOut.Txt='wrong input: need two or four structures';
|
---|
| 27 | end
|
---|
| 28 | test_1=0;
|
---|
[93] | 29 | if nargin==4% case of two input fields
|
---|
[40] | 30 | test_1=1;
|
---|
| 31 | Data_1=varargin{3};
|
---|
| 32 | DataOut_1=Data_1;%default
|
---|
| 33 | CalibData_1=varargin{4};
|
---|
| 34 | if isfield(CalibData_1,'GeometryCalib')
|
---|
| 35 | Calib{2}=CalibData_1.GeometryCalib;
|
---|
| 36 | end
|
---|
| 37 | end
|
---|
| 38 |
|
---|
| 39 | %parameters for polar coordinates (taken from the calibration data of the first field)
|
---|
| 40 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
| 41 | origin_xy=[0 0];%center for the polar coordinates in the original x,y coordinates
|
---|
| 42 | if isfield(Calib{1},'PolarCentre') && isnumeric(Calib{1}.PolarCentre)
|
---|
| 43 | if isequal(length(Calib{1}.PolarCentre),2);
|
---|
| 44 | origin_xy= Calib{1}.PolarCentre;
|
---|
| 45 | end
|
---|
| 46 | end
|
---|
| 47 | radius_offset=0;%reference radius used to offset the radial coordinate r
|
---|
| 48 | angle_offset=0; %reference angle used as new origin of the polar angle (= axis Ox by default)
|
---|
| 49 | if isfield(Calib{1},'PolarReferenceRadius') && isnumeric(Calib{1}.PolarReferenceRadius)
|
---|
| 50 | radius_offset=Calib{1}.PolarReferenceRadius;
|
---|
| 51 | end
|
---|
| 52 | if radius_offset > 0
|
---|
| 53 | angle_scale=radius_offset; %the azimuth is rescale in terms of the length along the reference radius
|
---|
| 54 | else
|
---|
| 55 | angle_scale=180/pi; %polar angle in degrees
|
---|
| 56 | end
|
---|
| 57 | if isfield(Calib{1},'PolarReferenceAngle') && isnumeric(Calib{1}.PolarReferenceAngle)
|
---|
| 58 | angle_offset=Calib{1}.PolarReferenceAngle; %offset angle (in unit of the final angle, degrees or arc length along the reference radius))
|
---|
| 59 | end
|
---|
| 60 | % new x coordinate = radius-radius_offset;
|
---|
| 61 | % new y coordinate = theta*angle_scale-angle_offset
|
---|
| 62 |
|
---|
| 63 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
| 64 |
|
---|
| 65 | iscalar=0;
|
---|
[93] | 66 | %transform first field to cartesian phys coordiantes
|
---|
[40] | 67 | if ~isempty(Calib{1})
|
---|
| 68 | DataOut=phys_1(Data,Calib{1},origin_xy,radius_offset,angle_offset,angle_scale);
|
---|
| 69 | %case of images or scalar
|
---|
| 70 | if isfield(Data,'A')&isfield(Data,'AX')&~isempty(Data.AX) & isfield(Data,'AY')&...
|
---|
| 71 | ~isempty(Data.AY)&length(Data.A)>1
|
---|
| 72 | iscalar=1;
|
---|
| 73 | A{1}=Data.A;
|
---|
| 74 | end
|
---|
| 75 | %transform of X,Y coordinates for vector fields
|
---|
| 76 | if isfield(Data,'ZIndex')&~isempty(Data.ZIndex)
|
---|
| 77 | ZIndex=Data.ZIndex;
|
---|
| 78 | else
|
---|
| 79 | ZIndex=0;
|
---|
| 80 | end
|
---|
| 81 | end
|
---|
[93] | 82 | %transform second field (if exists) to cartesian phys coordiantes
|
---|
[40] | 83 | if test_1
|
---|
| 84 | DataOut_1=phys_1(Data_1,Calib{2},origin_xy,radius_offset,angle_offset,angle_scale);
|
---|
| 85 | if isfield(Data_1,'A')&isfield(Data_1,'AX')&~isempty(Data_1.AX) & isfield(Data_1,'AY')&...
|
---|
| 86 | ~isempty(Data_1.AY)&length(Data_1.A)>1
|
---|
| 87 | iscalar=iscalar+1;
|
---|
| 88 | Calib{iscalar}=Calib{2};
|
---|
| 89 | A{iscalar}=Data_1.A;
|
---|
| 90 | if isfield(Data_1,'ZIndex')&~isequal(Data_1.ZIndex,ZIndex)
|
---|
| 91 | DataOut.Txt='inconsistent plane indexes in the two input fields';
|
---|
| 92 | end
|
---|
| 93 | if iscalar==1% case for which only the second field is a scalar
|
---|
[164] | 94 | [A,AX,AY]=phys_Ima_polar(A,Calib,ZIndex,origin_xy,radius_offset,angle_offset,angle_scale);
|
---|
[40] | 95 | DataOut_1.A=A{1};
|
---|
| 96 | DataOut_1.AX=AX;
|
---|
| 97 | DataOut_1.AY=AY;
|
---|
| 98 | return
|
---|
| 99 | end
|
---|
| 100 | end
|
---|
| 101 | end
|
---|
| 102 | if iscalar~=0
|
---|
[164] | 103 | [A,AX,AY]=phys_Ima_polar(A,Calib,ZIndex,origin_xy,radius_offset,angle_offset,angle_scale);%
|
---|
[40] | 104 | DataOut.A=A{1};
|
---|
| 105 | DataOut.AX=AX;
|
---|
| 106 | DataOut.AY=AY;
|
---|
| 107 | if iscalar==2
|
---|
| 108 | DataOut_1.A=A{2};
|
---|
| 109 | DataOut_1.AX=AX;
|
---|
| 110 | DataOut_1.AY=AY;
|
---|
| 111 | end
|
---|
| 112 | end
|
---|
| 113 |
|
---|
[161] | 114 |
|
---|
| 115 |
|
---|
| 116 |
|
---|
[40] | 117 | %------------------------------------------------
|
---|
| 118 | function DataOut=phys_1(Data,Calib,origin_xy,radius_offset,angle_offset,angle_scale)
|
---|
| 119 |
|
---|
| 120 | DataOut=Data;
|
---|
[167] | 121 | % DataOut.CoordUnit=Calib.CoordUnit; %put flag for physical coordinates
|
---|
[161] | 122 | if isfield(Calib,'SliceCoord')
|
---|
| 123 | DataOut.PlaneCoord=Calib.SliceCoord;%to generalise for any plane
|
---|
[40] | 124 | end
|
---|
[161] | 125 |
|
---|
| 126 | if isfield(Data,'CoordUnit')%&& isequal(Data.CoordType,'px')&& ~isempty(Calib)
|
---|
| 127 | if isfield(Calib,'CoordUnit')
|
---|
| 128 | DataOut.CoordUnit=Calib.CoordUnit;
|
---|
| 129 | else
|
---|
| 130 | DataOut.CoordUnit='cm'; %default
|
---|
[40] | 131 | end
|
---|
[161] | 132 | DataOut.TimeUnit='s';
|
---|
[40] | 133 | %transform of X,Y coordinates for vector fields
|
---|
[161] | 134 | if isfield(Data,'ZIndex') && ~isempty(Data.ZIndex)&&~isnan(Data.ZIndex)
|
---|
[40] | 135 | Z=Data.ZIndex;
|
---|
| 136 | else
|
---|
| 137 | Z=0;
|
---|
| 138 | end
|
---|
| 139 | if isfield(Data,'X') &isfield(Data,'Y')&~isempty(Data.X) & ~isempty(Data.Y)
|
---|
| 140 | [DataOut.X,DataOut.Y,DataOut.Z]=phys_XYZ(Calib,Data.X,Data.Y,Z); %transform from pixels to physical
|
---|
| 141 | DataOut.X=DataOut.X-origin_xy(1);%origin of coordinates at the tank center
|
---|
| 142 | DataOut.Y=DataOut.Y-origin_xy(2);%origin of coordinates at the tank center
|
---|
| 143 | [theta,DataOut.X] = cart2pol(DataOut.X,DataOut.Y);%theta and X are the polar coordinates angle and radius
|
---|
| 144 | %shift and renormalize the polar coordinates
|
---|
| 145 | DataOut.X=DataOut.X-radius_offset;%
|
---|
| 146 | DataOut.Y=theta*angle_scale-angle_offset;% normalized angle: distance along reference radius
|
---|
| 147 | %transform velocity field if exists
|
---|
| 148 | if isfield(Data,'U')&isfield(Data,'V')&~isempty(Data.U) & ~isempty(Data.V)& isfield(Data,'dt')
|
---|
| 149 | if ~isempty(Data.dt)
|
---|
| 150 | [XOut_1,YOut_1]=phys_XYZ(Calib,Data.X-Data.U/2,Data.Y-Data.V/2,Z);
|
---|
| 151 | [XOut_2,YOut_2]=phys_XYZ(Calib,Data.X+Data.U/2,Data.Y+Data.V/2,Z);
|
---|
| 152 | UX=(XOut_2-XOut_1)/Data.dt;
|
---|
| 153 | VY=(YOut_2-YOut_1)/Data.dt;
|
---|
| 154 | %transform u,v into polar coordiantes
|
---|
| 155 | DataOut.U=UX.*cos(theta)+VY.*sin(theta);%radial velocity
|
---|
| 156 | DataOut.V=(-UX.*sin(theta)+VY.*cos(theta));%./(DataOut.X)%+radius_ref);%angular velocity calculated
|
---|
| 157 | %shift and renormalize the angular velocity
|
---|
| 158 | end
|
---|
| 159 | end
|
---|
[93] | 160 | %transform of spatial derivatives
|
---|
| 161 | if isfield(Data,'X') && ~isempty(Data.X) && isfield(Data,'DjUi') && ~isempty(Data.DjUi)...
|
---|
| 162 | && isfield(Data,'dt')
|
---|
| 163 | if ~isempty(Data.dt)
|
---|
| 164 | % estimate the Jacobian matrix DXpx/DXphys
|
---|
| 165 | for ip=1:length(Data.X)
|
---|
| 166 | [Xp1,Yp1]=phys_XYZ(Calib,Data.X(ip)+0.5,Data.Y(ip),Z);
|
---|
| 167 | [Xm1,Ym1]=phys_XYZ(Calib,Data.X(ip)-0.5,Data.Y(ip),Z);
|
---|
| 168 | [Xp2,Yp2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)+0.5,Z);
|
---|
| 169 | [Xm2,Ym2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)-0.5,Z);
|
---|
| 170 | %Jacobian matrix DXpphys/DXpx
|
---|
| 171 | DjXi(1,1)=(Xp1-Xm1);
|
---|
| 172 | DjXi(2,1)=(Yp1-Ym1);
|
---|
| 173 | DjXi(1,2)=(Xp2-Xm2);
|
---|
| 174 | DjXi(2,2)=(Yp2-Ym2);
|
---|
| 175 | DjUi(:,:)=Data.DjUi(ip,:,:);
|
---|
| 176 | DjUi=(DjXi*DjUi')/DjXi;% =J-1*M*J , curvature effects (derivatives of J) neglected
|
---|
| 177 | DataOut.DjUi(ip,:,:)=DjUi';
|
---|
| 178 | end
|
---|
| 179 | DataOut.DjUi = DataOut.DjUi/Data.dt; % min(Data.DjUi(:,1,1))=DUDX
|
---|
| 180 | end
|
---|
| 181 | end
|
---|
[40] | 182 | end
|
---|
| 183 | end
|
---|
| 184 |
|
---|
[164] | 185 |
|
---|
[157] | 186 | %------------------------------------------------------------------------
|
---|
| 187 | %'phys_XYZ':transforms image (px) to real world (phys) coordinates using geometric calibration parameters
|
---|
| 188 | % function [Xphys,Yphys]=phys_XYZ(Calib,X,Y,Z)
|
---|
| 189 | %
|
---|
| 190 | %OUTPUT:
|
---|
| 191 | %
|
---|
| 192 | %INPUT:
|
---|
| 193 | %Z: index of plane
|
---|
| 194 | function [Xphys,Yphys,Zphys]=phys_XYZ(Calib,X,Y,Z)
|
---|
| 195 | %------------------------------------------------------------------------
|
---|
| 196 | if exist('Z','var')&& isequal(Z,round(Z))&& Z>0 && isfield(Calib,'SliceCoord')&&length(Calib.SliceCoord)>=Z
|
---|
| 197 | Zindex=Z;
|
---|
| 198 | Zphys=Calib.SliceCoord(Zindex,3);%GENERALISER AUX CAS AVEC ANGLE
|
---|
| 199 | else
|
---|
| 200 | Zphys=0;
|
---|
| 201 | end
|
---|
| 202 | if ~exist('X','var')||~exist('Y','var')
|
---|
| 203 | Xphys=[];
|
---|
| 204 | Yphys=[];%default
|
---|
| 205 | return
|
---|
| 206 | end
|
---|
| 207 | %coordinate transform
|
---|
| 208 | if ~isfield(Calib,'fx_fy')
|
---|
| 209 | Calib.fx_fy=[1 1];
|
---|
| 210 | end
|
---|
| 211 | if ~isfield(Calib,'Tx_Ty_Tz')
|
---|
| 212 | Calib.Tx_Ty_Tz=[0 0 1];
|
---|
| 213 | end
|
---|
| 214 | if ~isfield(Calib,'Cx_Cy')
|
---|
| 215 | Calib.Cx_Cy=[0 0];
|
---|
| 216 | end
|
---|
| 217 | if ~isfield(Calib,'kc')
|
---|
| 218 | Calib.kc=0;
|
---|
| 219 | end
|
---|
| 220 | if isfield(Calib,'R')
|
---|
| 221 | R=(Calib.R)';
|
---|
| 222 | Tx=Calib.Tx_Ty_Tz(1);
|
---|
| 223 | Ty=Calib.Tx_Ty_Tz(2);
|
---|
| 224 | Tz=Calib.Tx_Ty_Tz(3);
|
---|
| 225 | f=Calib.fx_fy(1);%dpy=1; sx=1
|
---|
| 226 | dpx=Calib.fx_fy(2)/Calib.fx_fy(1);
|
---|
| 227 | Dx=R(5)*R(7)-R(4)*R(8);
|
---|
| 228 | Dy=R(1)*R(8)-R(2)*R(7);
|
---|
| 229 | D0=f*(R(2)*R(4)-R(1)*R(5));
|
---|
| 230 | Z11=R(6)*R(8)-R(5)*R(9);
|
---|
| 231 | Z12=R(2)*R(9)-R(3)*R(8);
|
---|
| 232 | Z21=R(4)*R(9)-R(6)*R(7);
|
---|
| 233 | Z22=R(3)*R(7)-R(1)*R(9);
|
---|
| 234 | Zx0=R(3)*R(5)-R(2)*R(6);
|
---|
| 235 | Zy0=R(1)*R(6)-R(3)*R(4);
|
---|
| 236 | A11=R(8)*Ty-R(5)*Tz+Z11*Zphys;
|
---|
| 237 | A12=R(2)*Tz-R(8)*Tx+Z12*Zphys;
|
---|
| 238 | A21=-R(7)*Ty+R(4)*Tz+Z21*Zphys;
|
---|
| 239 | A22=-R(1)*Tz+R(7)*Tx+Z22*Zphys;
|
---|
| 240 | X0=f*(R(5)*Tx-R(2)*Ty+Zx0*Zphys);
|
---|
| 241 | Y0=f*(-R(4)*Tx+R(1)*Ty+Zy0*Zphys);
|
---|
| 242 | %px to camera:
|
---|
| 243 | Xd=dpx*(X-Calib.Cx_Cy(1)); % sensor coordinates
|
---|
| 244 | Yd=(Y-Calib.Cx_Cy(2));
|
---|
| 245 | dist_fact=1+Calib.kc*(Xd.*Xd+Yd.*Yd)/(f*f); %distortion factor
|
---|
| 246 | Xu=Xd./dist_fact;%undistorted sensor coordinates
|
---|
| 247 | Yu=Yd./dist_fact;
|
---|
| 248 | denom=Dx*Xu+Dy*Yu+D0;
|
---|
| 249 | Xphys=(A11.*Xu+A12.*Yu+X0)./denom;%world coordinates
|
---|
| 250 | Yphys=(A21.*Xu+A22.*Yu+Y0)./denom;
|
---|
| 251 | else
|
---|
| 252 | Xphys=-Calib.Tx_Ty_Tz(1)+X/Calib.fx_fy(1);
|
---|
| 253 | Yphys=-Calib.Tx_Ty_Tz(2)+Y/Calib.fx_fy(2);
|
---|
| 254 | end
|
---|
[164] | 255 |
|
---|
[40] | 256 | %%%%%%%%%%%%%%%%%%%%
|
---|
[164] | 257 | function [A_out,Rangx,Rangy]=phys_Ima_polar(A,CalibIn,ZIndex,origin_xy,radius_offset,angle_offset,angle_scale)
|
---|
[40] | 258 | xcorner=[];
|
---|
| 259 | ycorner=[];
|
---|
| 260 | npx=[];
|
---|
| 261 | npy=[];
|
---|
| 262 | for icell=1:length(A)
|
---|
| 263 | siz=size(A{icell});
|
---|
| 264 | npx=[npx siz(2)];
|
---|
| 265 | npy=[npy siz(1)];
|
---|
| 266 | zphys=0; %default
|
---|
| 267 | if isfield(CalibIn{icell},'SliceCoord') %.Z= index of plane
|
---|
| 268 | SliceCoord=CalibIn{icell}.SliceCoord(ZIndex,:);
|
---|
| 269 | zphys=SliceCoord(3); %to generalize for non-parallel planes
|
---|
| 270 | end
|
---|
| 271 | xima=[0.5 siz(2)-0.5 0.5 siz(2)-0.5];%image coordiantes of corners
|
---|
| 272 | yima=[0.5 0.5 siz(1)-0.5 siz(1)-0.5];
|
---|
| 273 | [xcorner_new,ycorner_new]=phys_XYZ(CalibIn{icell},xima,yima,ZIndex);%corresponding physical coordinates
|
---|
| 274 | %transform the corner coordinates into polar ones
|
---|
| 275 | xcorner_new=xcorner_new-origin_xy(1);%shift to the origin of the polar coordinates
|
---|
| 276 | ycorner_new=ycorner_new-origin_xy(2);%shift to the origin of the polar coordinates
|
---|
| 277 | [theta,xcorner_new] = cart2pol(xcorner_new,ycorner_new);%theta and X are the polar coordinates angle and radius
|
---|
| 278 | if (max(theta)-min(theta))>pi %if the polar origin is inside the image
|
---|
| 279 | xcorner_new=[0 max(xcorner_new)];
|
---|
| 280 | theta=[-pi pi];
|
---|
| 281 | end
|
---|
| 282 | %shift and renormalize the polar coordinates
|
---|
| 283 | xcorner_new=xcorner_new-radius_offset;%
|
---|
| 284 | ycorner_new=theta*angle_scale-angle_offset;% normalized angle: distance along reference radius
|
---|
| 285 | xcorner=[xcorner xcorner_new];
|
---|
| 286 | ycorner=[ycorner ycorner_new];
|
---|
| 287 | end
|
---|
| 288 | Rangx(1)=min(xcorner);
|
---|
| 289 | Rangx(2)=max(xcorner);
|
---|
| 290 | Rangy(2)=min(ycorner);
|
---|
| 291 | Rangy(1)=max(ycorner);
|
---|
| 292 | % test_multi=(max(npx)~=min(npx)) | (max(npy)~=min(npy));
|
---|
| 293 | npx=max(npx);
|
---|
| 294 | npy=max(npy);
|
---|
| 295 | x=linspace(Rangx(1),Rangx(2),npx);
|
---|
| 296 | y=linspace(Rangy(1),Rangy(2),npy);
|
---|
| 297 | [X,Y]=meshgrid(x,y);%grid in physical coordinates
|
---|
| 298 | %transform X, Y in cartesian
|
---|
| 299 | X=X+radius_offset;%
|
---|
| 300 | Y=(Y+angle_offset)/angle_scale;% normalized angle: distance along reference radius
|
---|
| 301 | [X,Y] = pol2cart(Y,X);
|
---|
| 302 | X=X+origin_xy(1);%shift to the origin of the polar coordinates
|
---|
| 303 | Y=Y+origin_xy(2);%shift to the origin of the polar coordinates
|
---|
| 304 | for icell=1:length(A)
|
---|
[164] | 305 | siz=size(A{icell});
|
---|
[40] | 306 | [XIMA,YIMA]=px_XYZ(CalibIn{icell},X,Y,zphys);%corresponding image indices for each point in the real space grid
|
---|
| 307 | XIMA=reshape(round(XIMA),1,npx*npy);%indices reorganized in 'line'
|
---|
| 308 | YIMA=reshape(round(YIMA),1,npx*npy);
|
---|
| 309 | flagin=XIMA>=1 & XIMA<=npx & YIMA >=1 & YIMA<=npy;%flagin=1 inside the original image
|
---|
[164] | 310 | if numel(siz)==2 %(B/W images)
|
---|
| 311 | vec_A=reshape(A{icell}(:,:,1),1,npx*npy);%put the original image in line
|
---|
| 312 | ind_in=find(flagin);
|
---|
| 313 | ind_out=find(~flagin);
|
---|
| 314 | ICOMB=((XIMA-1)*npy+(npy+1-YIMA));
|
---|
| 315 | ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A
|
---|
| 316 | vec_B(ind_in)=vec_A(ICOMB);
|
---|
| 317 | vec_B(ind_out)=zeros(size(ind_out));
|
---|
| 318 | A_out{icell}=reshape(vec_B,npy,npx);%new image in real coordinates
|
---|
| 319 | else
|
---|
| 320 | for icolor=1:siz(3)
|
---|
| 321 | vec_A=reshape(A{icell}(:,:,icolor),1,npx*npy);%put the original image in line
|
---|
| 322 | ind_in=find(flagin);
|
---|
| 323 | ind_out=find(~flagin);
|
---|
| 324 | ICOMB=((XIMA-1)*npy+(npy+1-YIMA));
|
---|
| 325 | ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A
|
---|
| 326 | vec_B(ind_in)=vec_A(ICOMB);
|
---|
| 327 | vec_B(ind_out)=zeros(size(ind_out));
|
---|
| 328 | A_out{icell}(:,:,icolor)=reshape(vec_B,npy,npx);%new image in real coordinates
|
---|
| 329 | end
|
---|
| 330 | end
|
---|
[40] | 331 | end
|
---|
| 332 |
|
---|