[574] | 1 | %'phys_polar': transforms image (Unit='pixel') to polar (phys) coordinates using geometric calibration parameters
|
---|
| 2 | %------------------------------------------------------------------------
|
---|
| 3 | %%%% Use the general syntax for transform fields %%%%
|
---|
| 4 | % OUTPUT:
|
---|
| 5 | % DataOut: output field structure
|
---|
| 6 | % .X=radius, .Y=azimuth angle, .U, .V are radial and azimuthal velocity components
|
---|
[810] | 7 | %
|
---|
[574] | 8 | %INPUT:
|
---|
| 9 | % DataIn: first input field structure
|
---|
| 10 | % XmlData: first input parameter structure,
|
---|
| 11 | % .GeometryCalib: substructure of the calibration parameters
|
---|
| 12 | % DataIn_1: optional second input field structure
|
---|
| 13 | % XmlData_1: optional second input parameter structure
|
---|
| 14 | % .GeometryCalib: substructure of the calibration parameters
|
---|
[172] | 15 | % transform image coordinates (px) to polar physical coordinates
|
---|
[40] | 16 | %[DataOut,DataOut_1]=phys_polar(varargin)
|
---|
| 17 | %
|
---|
| 18 | % OUTPUT:
|
---|
| 19 | % DataOut: structure of modified data field: .X=radius, .Y=azimuth angle, .U, .V are radial and azimuthal velocity components
|
---|
| 20 | % DataOut_1: second data field (if two fields are in input)
|
---|
| 21 | %
|
---|
| 22 | %INPUT:
|
---|
| 23 | % Data: structure of input data (like UvData)
|
---|
[658] | 24 | % XmlData= structure containing the field .GeometryCalib with calibration parameters
|
---|
[40] | 25 | % Data_1: second input field (not mandatory)
|
---|
[658] | 26 | % XmlData_1= calibration parameters for the second field
|
---|
[810] | 27 |
|
---|
| 28 | %=======================================================================
|
---|
[924] | 29 | % Copyright 2008-2016, LEGI UMR 5519 / CNRS UGA G-INP, Grenoble, France
|
---|
[810] | 30 | % http://www.legi.grenoble-inp.fr
|
---|
| 31 | % Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr
|
---|
| 32 | %
|
---|
| 33 | % This file is part of the toolbox UVMAT.
|
---|
| 34 | %
|
---|
| 35 | % UVMAT is free software; you can redistribute it and/or modify
|
---|
| 36 | % it under the terms of the GNU General Public License as published
|
---|
| 37 | % by the Free Software Foundation; either version 2 of the license,
|
---|
| 38 | % or (at your option) any later version.
|
---|
| 39 | %
|
---|
| 40 | % UVMAT is distributed in the hope that it will be useful,
|
---|
| 41 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 42 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 43 | % GNU General Public License (see LICENSE.txt) for more details.
|
---|
| 44 | %=======================================================================
|
---|
| 45 |
|
---|
[574] | 46 | function DataOut=phys_polar(DataIn,XmlData,DataIn_1,XmlData_1)
|
---|
| 47 | %------------------------------------------------------------------------
|
---|
[933] | 48 | %% request input parameters
|
---|
| 49 | if isfield(DataIn,'Action') && isfield(DataIn.Action,'RUN') && isequal(DataIn.Action.RUN,0)
|
---|
| 50 | prompt = {'origin [x y] of polar coordinates';'reference radius';'reference angle(degrees)'};
|
---|
| 51 | dlg_title = 'set the parameters for the polar coordinates';
|
---|
| 52 | num_lines= 2;
|
---|
| 53 | def = { '[0 0]';'0';'0'};
|
---|
| 54 | if isfield(XmlData,'TransformInput')
|
---|
| 55 | if isfield(XmlData.TransformInput,'PolarCentre')
|
---|
| 56 | def{1}=num2str(XmlData.TransformInput.PolarCentre);
|
---|
| 57 | end
|
---|
| 58 | if isfield(XmlData.TransformInput,'PolarReferenceRadius')
|
---|
| 59 | def{2}=num2str(XmlData.TransformInput.PolarReferenceRadius);
|
---|
| 60 | end
|
---|
| 61 | if isfield(XmlData.TransformInput,'PolarReferenceAngle')
|
---|
| 62 | def{3}=num2str(XmlData.TransformInput.PolarReferenceAngle);
|
---|
| 63 | end
|
---|
| 64 | end
|
---|
| 65 | answer = inputdlg(prompt,dlg_title,num_lines,def);
|
---|
| 66 | DataOut.TransformInput.PolarCentre=str2num(answer{1});
|
---|
| 67 | DataOut.TransformInput.PolarReferenceRadius=str2num(answer{2});
|
---|
| 68 | DataOut.TransformInput.PolarReferenceAngle=str2num(answer{3});
|
---|
[935] | 69 | if isfield(XmlData,'GeometryCalib')&& isfield(XmlData.GeometryCalib,'CoordUnit')
|
---|
| 70 | DataOut.CoordUnit=XmlData.GeometryCalib.CoordUnit;% states that the output is in unit defined by GeometryCalib, then erased all projection objects with different units
|
---|
| 71 | end
|
---|
[933] | 72 | return
|
---|
| 73 | end
|
---|
| 74 |
|
---|
[40] | 75 | Calib{1}=[];
|
---|
| 76 | if nargin==2||nargin==4
|
---|
[658] | 77 | DataOut=DataIn;%default
|
---|
[40] | 78 | DataOut_1=[];%default
|
---|
[658] | 79 | if isfield(XmlData,'GeometryCalib')
|
---|
| 80 | Calib{1}=XmlData.GeometryCalib;
|
---|
[40] | 81 | end
|
---|
| 82 | Calib{2}=Calib{1};
|
---|
| 83 | else
|
---|
| 84 | DataOut.Txt='wrong input: need two or four structures';
|
---|
| 85 | end
|
---|
| 86 | test_1=0;
|
---|
[93] | 87 | if nargin==4% case of two input fields
|
---|
[40] | 88 | test_1=1;
|
---|
[658] | 89 | DataOut_1=DataIn_1;%default
|
---|
| 90 | if isfield(XmlData_1,'GeometryCalib')
|
---|
| 91 | Calib{2}=XmlData_1.GeometryCalib;
|
---|
[40] | 92 | end
|
---|
| 93 | end
|
---|
| 94 |
|
---|
| 95 | %parameters for polar coordinates (taken from the calibration data of the first field)
|
---|
| 96 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
[933] | 97 | XmlData.PolarReferenceRadius=450;
|
---|
| 98 | XmlData.PolarReferenceAngle=450*pi/2;
|
---|
[40] | 99 | origin_xy=[0 0];%center for the polar coordinates in the original x,y coordinates
|
---|
[933] | 100 | radius_offset=0;%reference radius used to offset the radial coordinate r
|
---|
| 101 | angle_offset=0; %reference angle used as new origin of the polar angle (= axis Ox by default)
|
---|
| 102 | if isfield(XmlData,'TransformInput')
|
---|
| 103 | if isfield(XmlData.TransformInput,'PolarCentre') && isnumeric(XmlData.TransformInput.PolarCentre)
|
---|
| 104 | if isequal(length(XmlData.TransformInput.PolarCentre),2);
|
---|
| 105 | origin_xy= XmlData.TransformInput.PolarCentre;
|
---|
| 106 | end
|
---|
[40] | 107 | end
|
---|
[933] | 108 | if isfield(XmlData.TransformInput,'PolarReferenceRadius') && isnumeric(XmlData.TransformInput.PolarReferenceRadius)
|
---|
| 109 | radius_offset=XmlData.TransformInput.PolarReferenceRadius;
|
---|
| 110 | end
|
---|
| 111 | if radius_offset > 0
|
---|
| 112 | angle_scale=radius_offset; %the azimuth is rescale in terms of the length along the reference radius
|
---|
| 113 | else
|
---|
| 114 | angle_scale=180/pi; %polar angle in degrees
|
---|
| 115 | end
|
---|
| 116 | if isfield(XmlData.TransformInput,'PolarReferenceAngle') && isnumeric(XmlData.TransformInput.PolarReferenceAngle)
|
---|
| 117 | angle_offset=(pi/180)*XmlData.TransformInput.PolarReferenceAngle; %offset angle (in unit of the final angle, degrees or arc length along the reference radius))
|
---|
| 118 | end
|
---|
[40] | 119 | end
|
---|
| 120 |
|
---|
| 121 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
| 122 |
|
---|
| 123 | iscalar=0;
|
---|
[93] | 124 | %transform first field to cartesian phys coordiantes
|
---|
[40] | 125 | if ~isempty(Calib{1})
|
---|
[880] | 126 | DataOut=phys_1(DataIn,Calib{1},origin_xy,radius_offset,angle_offset,angle_scale);
|
---|
[40] | 127 | %case of images or scalar
|
---|
[880] | 128 | if isfield(DataIn,'A')&isfield(DataIn,'Coord_x')&~isempty(DataIn.Coord_x) & isfield(DataIn,'Coord_y')&...
|
---|
| 129 | ~isempty(DataIn.Coord_y)&length(DataIn.A)>1
|
---|
[40] | 130 | iscalar=1;
|
---|
[880] | 131 | A{1}=DataIn.A;
|
---|
[40] | 132 | end
|
---|
| 133 | %transform of X,Y coordinates for vector fields
|
---|
[880] | 134 | if isfield(DataIn,'ZIndex')&~isempty(DataIn.ZIndex)
|
---|
| 135 | ZIndex=DataIn.ZIndex;
|
---|
[40] | 136 | else
|
---|
| 137 | ZIndex=0;
|
---|
| 138 | end
|
---|
| 139 | end
|
---|
[567] | 140 |
|
---|
[93] | 141 | %transform second field (if exists) to cartesian phys coordiantes
|
---|
[40] | 142 | if test_1
|
---|
| 143 | DataOut_1=phys_1(Data_1,Calib{2},origin_xy,radius_offset,angle_offset,angle_scale);
|
---|
[782] | 144 | if isfield(Data_1,'A')&isfield(Data_1,'Coord_x')&~isempty(Data_1.Coord_x) & isfield(Data_1,'Coord_y')&...
|
---|
| 145 | ~isempty(Data_1.Coord_y)&length(Data_1.A)>1
|
---|
[40] | 146 | iscalar=iscalar+1;
|
---|
| 147 | Calib{iscalar}=Calib{2};
|
---|
| 148 | A{iscalar}=Data_1.A;
|
---|
| 149 | if isfield(Data_1,'ZIndex')&~isequal(Data_1.ZIndex,ZIndex)
|
---|
| 150 | DataOut.Txt='inconsistent plane indexes in the two input fields';
|
---|
| 151 | end
|
---|
| 152 | if iscalar==1% case for which only the second field is a scalar
|
---|
[782] | 153 | [A,Coord_x,Coord_y]=phys_Ima_polar(A,Calib,ZIndex,origin_xy,radius_offset,angle_offset,angle_scale);
|
---|
[40] | 154 | DataOut_1.A=A{1};
|
---|
[782] | 155 | DataOut_1.Coord_x=Coord_x;
|
---|
| 156 | DataOut_1.Coord_y=Coord_y;
|
---|
[40] | 157 | return
|
---|
| 158 | end
|
---|
| 159 | end
|
---|
| 160 | end
|
---|
| 161 | if iscalar~=0
|
---|
[782] | 162 | [A,Coord_x,Coord_y]=phys_Ima_polar(A,Calib,ZIndex,origin_xy,radius_offset,angle_offset,angle_scale);%
|
---|
[40] | 163 | DataOut.A=A{1};
|
---|
[782] | 164 | DataOut.Coord_x=Coord_x;
|
---|
| 165 | DataOut.Coord_y=Coord_y;
|
---|
[40] | 166 | if iscalar==2
|
---|
| 167 | DataOut_1.A=A{2};
|
---|
[782] | 168 | DataOut_1.Coord_x=Coord_x;
|
---|
| 169 | DataOut_1.Coord_y=Coord_y;
|
---|
[40] | 170 | end
|
---|
| 171 | end
|
---|
| 172 |
|
---|
[161] | 173 |
|
---|
| 174 |
|
---|
| 175 |
|
---|
[40] | 176 | %------------------------------------------------
|
---|
| 177 | function DataOut=phys_1(Data,Calib,origin_xy,radius_offset,angle_offset,angle_scale)
|
---|
| 178 |
|
---|
| 179 | DataOut=Data;
|
---|
[167] | 180 | % DataOut.CoordUnit=Calib.CoordUnit; %put flag for physical coordinates
|
---|
[161] | 181 | if isfield(Calib,'SliceCoord')
|
---|
| 182 | DataOut.PlaneCoord=Calib.SliceCoord;%to generalise for any plane
|
---|
[40] | 183 | end
|
---|
[161] | 184 |
|
---|
| 185 | if isfield(Data,'CoordUnit')%&& isequal(Data.CoordType,'px')&& ~isempty(Calib)
|
---|
| 186 | if isfield(Calib,'CoordUnit')
|
---|
| 187 | DataOut.CoordUnit=Calib.CoordUnit;
|
---|
| 188 | else
|
---|
| 189 | DataOut.CoordUnit='cm'; %default
|
---|
[40] | 190 | end
|
---|
[161] | 191 | DataOut.TimeUnit='s';
|
---|
[40] | 192 | %transform of X,Y coordinates for vector fields
|
---|
[161] | 193 | if isfield(Data,'ZIndex') && ~isempty(Data.ZIndex)&&~isnan(Data.ZIndex)
|
---|
[40] | 194 | Z=Data.ZIndex;
|
---|
| 195 | else
|
---|
| 196 | Z=0;
|
---|
| 197 | end
|
---|
| 198 | if isfield(Data,'X') &isfield(Data,'Y')&~isempty(Data.X) & ~isempty(Data.Y)
|
---|
| 199 | [DataOut.X,DataOut.Y,DataOut.Z]=phys_XYZ(Calib,Data.X,Data.Y,Z); %transform from pixels to physical
|
---|
| 200 | DataOut.X=DataOut.X-origin_xy(1);%origin of coordinates at the tank center
|
---|
| 201 | DataOut.Y=DataOut.Y-origin_xy(2);%origin of coordinates at the tank center
|
---|
| 202 | [theta,DataOut.X] = cart2pol(DataOut.X,DataOut.Y);%theta and X are the polar coordinates angle and radius
|
---|
| 203 | %shift and renormalize the polar coordinates
|
---|
[933] | 204 | DataOut.X=DataOut.X-radius_offset;%shift the origin of radius, taken as the new X coordinate
|
---|
| 205 | DataOut.Y=(theta-angle_offset)*angle_scale;% normalized angle: distance along reference radius,taken as the new Y coordinate
|
---|
[40] | 206 | %transform velocity field if exists
|
---|
[933] | 207 | if isfield(Data,'U') & isfield(Data,'V') & ~isempty(Data.U) & ~isempty(Data.V)& isfield(Data,'Dt')
|
---|
| 208 | if ~isempty(Data.Dt)
|
---|
| 209 | [XOut_1,YOut_1]=phys_XYZ(Calib,Data.X-Data.U/2,Data.Y-Data.V/2,Z);% X,Y positions of the vector origin in phys
|
---|
| 210 | [XOut_2,YOut_2]=phys_XYZ(Calib,Data.X+Data.U/2,Data.Y+Data.V/2,Z);% X,Y positions of the vector end in phys
|
---|
| 211 | UX=(XOut_2-XOut_1)/Data.Dt;% phys velocity u component
|
---|
| 212 | VY=(YOut_2-YOut_1)/Data.Dt; % phys velocity v component
|
---|
[40] | 213 | %transform u,v into polar coordiantes
|
---|
| 214 | DataOut.U=UX.*cos(theta)+VY.*sin(theta);%radial velocity
|
---|
[933] | 215 | DataOut.V=(-UX.*sin(theta)+VY.*cos(theta));%./(DataOut.X)%+radius_ref);% azimuthal velocity component
|
---|
[40] | 216 | %shift and renormalize the angular velocity
|
---|
| 217 | end
|
---|
| 218 | end
|
---|
[93] | 219 | %transform of spatial derivatives
|
---|
| 220 | if isfield(Data,'X') && ~isempty(Data.X) && isfield(Data,'DjUi') && ~isempty(Data.DjUi)...
|
---|
[933] | 221 | && isfield(Data,'Dt')
|
---|
| 222 | if ~isempty(Data.Dt)
|
---|
[93] | 223 | % estimate the Jacobian matrix DXpx/DXphys
|
---|
| 224 | for ip=1:length(Data.X)
|
---|
| 225 | [Xp1,Yp1]=phys_XYZ(Calib,Data.X(ip)+0.5,Data.Y(ip),Z);
|
---|
| 226 | [Xm1,Ym1]=phys_XYZ(Calib,Data.X(ip)-0.5,Data.Y(ip),Z);
|
---|
| 227 | [Xp2,Yp2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)+0.5,Z);
|
---|
| 228 | [Xm2,Ym2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)-0.5,Z);
|
---|
| 229 | %Jacobian matrix DXpphys/DXpx
|
---|
| 230 | DjXi(1,1)=(Xp1-Xm1);
|
---|
| 231 | DjXi(2,1)=(Yp1-Ym1);
|
---|
| 232 | DjXi(1,2)=(Xp2-Xm2);
|
---|
| 233 | DjXi(2,2)=(Yp2-Ym2);
|
---|
| 234 | DjUi(:,:)=Data.DjUi(ip,:,:);
|
---|
| 235 | DjUi=(DjXi*DjUi')/DjXi;% =J-1*M*J , curvature effects (derivatives of J) neglected
|
---|
| 236 | DataOut.DjUi(ip,:,:)=DjUi';
|
---|
| 237 | end
|
---|
[933] | 238 | DataOut.DjUi = DataOut.DjUi/Data.Dt; % min(Data.DjUi(:,1,1))=DUDX
|
---|
[93] | 239 | end
|
---|
| 240 | end
|
---|
[40] | 241 | end
|
---|
| 242 | end
|
---|
| 243 |
|
---|
[164] | 244 |
|
---|
[40] | 245 | %%%%%%%%%%%%%%%%%%%%
|
---|
[164] | 246 | function [A_out,Rangx,Rangy]=phys_Ima_polar(A,CalibIn,ZIndex,origin_xy,radius_offset,angle_offset,angle_scale)
|
---|
[40] | 247 | xcorner=[];
|
---|
| 248 | ycorner=[];
|
---|
| 249 | npx=[];
|
---|
| 250 | npy=[];
|
---|
| 251 | for icell=1:length(A)
|
---|
| 252 | siz=size(A{icell});
|
---|
| 253 | npx=[npx siz(2)];
|
---|
| 254 | npy=[npy siz(1)];
|
---|
| 255 | zphys=0; %default
|
---|
| 256 | if isfield(CalibIn{icell},'SliceCoord') %.Z= index of plane
|
---|
| 257 | SliceCoord=CalibIn{icell}.SliceCoord(ZIndex,:);
|
---|
| 258 | zphys=SliceCoord(3); %to generalize for non-parallel planes
|
---|
| 259 | end
|
---|
| 260 | xima=[0.5 siz(2)-0.5 0.5 siz(2)-0.5];%image coordiantes of corners
|
---|
| 261 | yima=[0.5 0.5 siz(1)-0.5 siz(1)-0.5];
|
---|
| 262 | [xcorner_new,ycorner_new]=phys_XYZ(CalibIn{icell},xima,yima,ZIndex);%corresponding physical coordinates
|
---|
| 263 | %transform the corner coordinates into polar ones
|
---|
| 264 | xcorner_new=xcorner_new-origin_xy(1);%shift to the origin of the polar coordinates
|
---|
| 265 | ycorner_new=ycorner_new-origin_xy(2);%shift to the origin of the polar coordinates
|
---|
| 266 | [theta,xcorner_new] = cart2pol(xcorner_new,ycorner_new);%theta and X are the polar coordinates angle and radius
|
---|
| 267 | if (max(theta)-min(theta))>pi %if the polar origin is inside the image
|
---|
| 268 | xcorner_new=[0 max(xcorner_new)];
|
---|
| 269 | theta=[-pi pi];
|
---|
| 270 | end
|
---|
| 271 | %shift and renormalize the polar coordinates
|
---|
| 272 | xcorner_new=xcorner_new-radius_offset;%
|
---|
| 273 | ycorner_new=theta*angle_scale-angle_offset;% normalized angle: distance along reference radius
|
---|
| 274 | xcorner=[xcorner xcorner_new];
|
---|
| 275 | ycorner=[ycorner ycorner_new];
|
---|
| 276 | end
|
---|
| 277 | Rangx(1)=min(xcorner);
|
---|
| 278 | Rangx(2)=max(xcorner);
|
---|
| 279 | Rangy(2)=min(ycorner);
|
---|
| 280 | Rangy(1)=max(ycorner);
|
---|
| 281 | % test_multi=(max(npx)~=min(npx)) | (max(npy)~=min(npy));
|
---|
| 282 | npx=max(npx);
|
---|
| 283 | npy=max(npy);
|
---|
| 284 | x=linspace(Rangx(1),Rangx(2),npx);
|
---|
| 285 | y=linspace(Rangy(1),Rangy(2),npy);
|
---|
| 286 | [X,Y]=meshgrid(x,y);%grid in physical coordinates
|
---|
| 287 | %transform X, Y in cartesian
|
---|
| 288 | X=X+radius_offset;%
|
---|
| 289 | Y=(Y+angle_offset)/angle_scale;% normalized angle: distance along reference radius
|
---|
| 290 | [X,Y] = pol2cart(Y,X);
|
---|
| 291 | X=X+origin_xy(1);%shift to the origin of the polar coordinates
|
---|
| 292 | Y=Y+origin_xy(2);%shift to the origin of the polar coordinates
|
---|
| 293 | for icell=1:length(A)
|
---|
[164] | 294 | siz=size(A{icell});
|
---|
[40] | 295 | [XIMA,YIMA]=px_XYZ(CalibIn{icell},X,Y,zphys);%corresponding image indices for each point in the real space grid
|
---|
| 296 | XIMA=reshape(round(XIMA),1,npx*npy);%indices reorganized in 'line'
|
---|
| 297 | YIMA=reshape(round(YIMA),1,npx*npy);
|
---|
| 298 | flagin=XIMA>=1 & XIMA<=npx & YIMA >=1 & YIMA<=npy;%flagin=1 inside the original image
|
---|
[164] | 299 | if numel(siz)==2 %(B/W images)
|
---|
| 300 | vec_A=reshape(A{icell}(:,:,1),1,npx*npy);%put the original image in line
|
---|
| 301 | ind_in=find(flagin);
|
---|
| 302 | ind_out=find(~flagin);
|
---|
| 303 | ICOMB=((XIMA-1)*npy+(npy+1-YIMA));
|
---|
| 304 | ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A
|
---|
| 305 | vec_B(ind_in)=vec_A(ICOMB);
|
---|
| 306 | vec_B(ind_out)=zeros(size(ind_out));
|
---|
| 307 | A_out{icell}=reshape(vec_B,npy,npx);%new image in real coordinates
|
---|
| 308 | else
|
---|
| 309 | for icolor=1:siz(3)
|
---|
| 310 | vec_A=reshape(A{icell}(:,:,icolor),1,npx*npy);%put the original image in line
|
---|
| 311 | ind_in=find(flagin);
|
---|
| 312 | ind_out=find(~flagin);
|
---|
| 313 | ICOMB=((XIMA-1)*npy+(npy+1-YIMA));
|
---|
| 314 | ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A
|
---|
| 315 | vec_B(ind_in)=vec_A(ICOMB);
|
---|
| 316 | vec_B(ind_out)=zeros(size(ind_out));
|
---|
| 317 | A_out{icell}(:,:,icolor)=reshape(vec_B,npy,npx);%new image in real coordinates
|
---|
| 318 | end
|
---|
| 319 | end
|
---|
[40] | 320 | end
|
---|
| 321 |
|
---|