1 | %'phys_polar': transforms image (Unit='pixel') to polar (phys) coordinates using geometric calibration parameters
|
---|
2 | %------------------------------------------------------------------------
|
---|
3 | %%%% Use the general syntax for transform fields %%%%
|
---|
4 | % OUTPUT:
|
---|
5 | % Data: output field structure
|
---|
6 | % .X=radius, .Y=azimuth angle, .U, .V are radial and azimuthal velocity components
|
---|
7 | %
|
---|
8 | %INPUT:
|
---|
9 | % DataIn: first input field structure
|
---|
10 | % XmlData: first input parameter structure,
|
---|
11 | % .GeometryCalib: substructure of the calibration parameters
|
---|
12 | % DataIn_1: optional second input field structure
|
---|
13 | % XmlData_1: optional second input parameter structure
|
---|
14 | % .GeometryCalib: substructure of the calibration parameters
|
---|
15 | % transform image coordinates (px) to polar physical coordinates
|
---|
16 | %[Data,Data_1]=phys_polar(varargin)
|
---|
17 | %
|
---|
18 | % OUTPUT:
|
---|
19 | % Data: structure of modified data field: .X=radius, .Y=azimuth angle, .U, .V are radial and azimuthal velocity components
|
---|
20 | % Data_1: second data field (if two fields are in input)
|
---|
21 | %
|
---|
22 | %INPUT:
|
---|
23 | % Data: structure of input data (like UvData)
|
---|
24 | % XmlData= structure containing the field .GeometryCalib with calibration parameters
|
---|
25 | % Data_1: second input field (not mandatory)
|
---|
26 | % XmlData_1= calibration parameters for the second field
|
---|
27 |
|
---|
28 | %=======================================================================
|
---|
29 | % Copyright 2008-2021, LEGI UMR 5519 / CNRS UGA G-INP, Grenoble, France
|
---|
30 | % http://www.legi.grenoble-inp.fr
|
---|
31 | % Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr
|
---|
32 | %
|
---|
33 | % This file is part of the toolbox UVMAT.
|
---|
34 | %
|
---|
35 | % UVMAT is free software; you can redistribute it and/or modify
|
---|
36 | % it under the terms of the GNU General Public License as published
|
---|
37 | % by the Free Software Foundation; either version 2 of the license,
|
---|
38 | % or (at your option) any later version.
|
---|
39 | %
|
---|
40 | % UVMAT is distributed in the hope that it will be useful,
|
---|
41 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
42 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
43 | % GNU General Public License (see LICENSE.txt) for more details.
|
---|
44 | %=======================================================================
|
---|
45 |
|
---|
46 | function Data=phys_polar(DataIn,XmlData,DataIn_1,XmlData_1)
|
---|
47 | %------------------------------------------------------------------------
|
---|
48 |
|
---|
49 | %% request input parameters
|
---|
50 | if isfield(DataIn,'Action') && isfield(DataIn.Action,'RUN') && isequal(DataIn.Action.RUN,0)
|
---|
51 | prompt = {'origin [x y] of polar coordinates';'reference radius';'reference angle(degrees)';'angle direction and switch x y(+/-)'};
|
---|
52 | dlg_title = 'set the parameters for the polar coordinates';
|
---|
53 | num_lines= 2;
|
---|
54 | def = { '[0 0]';'0';'0';'+'};
|
---|
55 | if isfield(XmlData,'TransformInput')
|
---|
56 | if isfield(XmlData.TransformInput,'PolarCentre')
|
---|
57 | def{1}=num2str(XmlData.TransformInput.PolarCentre);
|
---|
58 | end
|
---|
59 | if isfield(XmlData.TransformInput,'PolarReferenceRadius')
|
---|
60 | def{2}=num2str(XmlData.TransformInput.PolarReferenceRadius);
|
---|
61 | end
|
---|
62 | if isfield(XmlData.TransformInput,'PolarReferenceAngle')
|
---|
63 | def{3}=num2str(XmlData.TransformInput.PolarReferenceAngle);
|
---|
64 | end
|
---|
65 | if isfield(XmlData.TransformInput,'PolarAngleDirection')
|
---|
66 | def{4}=XmlData.TransformInput.PolarAngleDirection;
|
---|
67 | end
|
---|
68 | end
|
---|
69 | answer = inputdlg(prompt,dlg_title,num_lines,def);
|
---|
70 | Data.TransformInput.PolarCentre=str2num(answer{1});
|
---|
71 | Data.TransformInput.PolarReferenceRadius=str2num(answer{2});
|
---|
72 | Data.TransformInput.PolarReferenceAngle=str2num(answer{3});
|
---|
73 | Data.TransformInput.PolarAngleDirection=answer{4};
|
---|
74 | return
|
---|
75 | end
|
---|
76 |
|
---|
77 | %% default outputs
|
---|
78 | Data=DataIn; %default output
|
---|
79 | if isfield(Data,'CoordUnit')
|
---|
80 | Data=rmfield(Data,'CoordUnit');
|
---|
81 | end
|
---|
82 | Data.ListVarName = {};
|
---|
83 | Data.VarDimName={};
|
---|
84 | Data.VarAttribute={};
|
---|
85 | DataCell{1}=DataIn;
|
---|
86 | Calib{1}=[];
|
---|
87 | DataCell{2}=[];%default
|
---|
88 | checkpixel(1)=0;
|
---|
89 | if isfield(DataCell{1},'CoorUnit')&& strcmp(DataCell{1}.CoorUnit,'px')
|
---|
90 | checkpixel(1)=1;
|
---|
91 | end
|
---|
92 | if nargin==2||nargin==4
|
---|
93 | if isfield(XmlData,'GeometryCalib') && ~isempty(XmlData.GeometryCalib)&& checkpixel(1)
|
---|
94 | Calib{1}=XmlData.GeometryCalib;
|
---|
95 | end
|
---|
96 | Calib{2}=Calib{1};
|
---|
97 | else
|
---|
98 | Data.Txt='wrong input: need two or four structures';
|
---|
99 | end
|
---|
100 | nbinput=1;
|
---|
101 | if nargin==4% case of two input fields
|
---|
102 | checkpixel(2)=0;
|
---|
103 | if isfield(DataCell{2},'CoorUnit')&& strcmp(DataCell{2}.CoorUnit,'px')
|
---|
104 | checkpixel(2)=1;
|
---|
105 | end
|
---|
106 | DataCell{2}=DataIn_1;%default
|
---|
107 | if isfield(XmlData_1,'GeometryCalib')&& ~isempty(XmlData_1.GeometryCalib) && checkpixel(2)
|
---|
108 | Calib{2}=XmlData_1.GeometryCalib;
|
---|
109 | end
|
---|
110 | nbinput=2;
|
---|
111 | end
|
---|
112 |
|
---|
113 | %% parameters for polar coordinates (taken from the calibration data of the first field)
|
---|
114 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
115 | origin_xy=[0 0];%center for the polar coordinates in the original x,y coordinates
|
---|
116 | radius_offset=0;%reference radius used to offset the radial coordinate r
|
---|
117 | angle_offset=0; %reference angle used as new origin of the polar angle (= axis Ox by default)
|
---|
118 | angle_scale=180/pi;
|
---|
119 | check_degree=1;%angle expressed in degrees by default
|
---|
120 | if isfield(XmlData,'TransformInput')
|
---|
121 | if isfield(XmlData.TransformInput,'PolarCentre') && isnumeric(XmlData.TransformInput.PolarCentre)
|
---|
122 | if isequal(length(XmlData.TransformInput.PolarCentre),2)
|
---|
123 | origin_xy= XmlData.TransformInput.PolarCentre;
|
---|
124 | end
|
---|
125 | end
|
---|
126 | if isfield(XmlData.TransformInput,'PolarReferenceRadius') && isnumeric(XmlData.TransformInput.PolarReferenceRadius)
|
---|
127 | radius_offset=XmlData.TransformInput.PolarReferenceRadius;
|
---|
128 | end
|
---|
129 | if radius_offset > 0
|
---|
130 | angle_scale=radius_offset; %the azimuth is rescale in terms of the length along the reference radius
|
---|
131 | check_degree=0; %the output has the same unit asthe input
|
---|
132 | else
|
---|
133 | angle_scale=180/pi; %polar angle in degrees
|
---|
134 | check_degree=1;%angle expressed in degrees
|
---|
135 | end
|
---|
136 | if isfield(XmlData.TransformInput,'PolarReferenceAngle') && isnumeric(XmlData.TransformInput.PolarReferenceAngle)
|
---|
137 | angle_offset=(pi/180)*XmlData.TransformInput.PolarReferenceAngle; %offset angle (in unit of the final angle, degrees or arc length along the reference radius))
|
---|
138 | end
|
---|
139 | check_reverse=isfield(XmlData.TransformInput,'PolarAngleDirection')&& strcmp(XmlData.TransformInput.PolarAngleDirection,'-');
|
---|
140 | end
|
---|
141 |
|
---|
142 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
143 | %% get fields
|
---|
144 |
|
---|
145 | nbvar=0;%counter for the number of output variables
|
---|
146 | nbcoord=0;%counter for the number of variables for radial coordiantes (case of multiple field inputs)
|
---|
147 | nbgrid=0;%counter for the number of gridded fields (all linearly interpolated on the same output polar grid)
|
---|
148 | nbscattered=0;%counter of scattered fields
|
---|
149 | radius_name='radius';
|
---|
150 | theta_name='theta';
|
---|
151 | U_r_name='U_r';
|
---|
152 | U_theta_name='U_theta';
|
---|
153 | for ifield=1:nbinput %1 or 2 input fields
|
---|
154 | [CellInfo,NbDim,errormsg]=find_field_cells(DataCell{ifield});
|
---|
155 | if ~isempty(errormsg)
|
---|
156 | Data.Txt=['bad input to phys_polar: ' errormsg];
|
---|
157 | return
|
---|
158 | end
|
---|
159 | % end
|
---|
160 | %transform of X,Y coordinates for vector fields
|
---|
161 | if isfield(DataCell{ifield},'ZIndex')&& ~isempty(DataCell{ifield}.ZIndex)
|
---|
162 | ZIndex=DataCell{ifield}.ZIndex;
|
---|
163 | else
|
---|
164 | ZIndex=0;
|
---|
165 | end
|
---|
166 | check_scalar=zeros(1,numel(CellInfo));
|
---|
167 | check_vector=zeros(1,numel(CellInfo));
|
---|
168 | for icell=1:numel(CellInfo)
|
---|
169 | if NbDim(icell)==2
|
---|
170 | % case of input field with scattered coordinates
|
---|
171 | if strcmp(CellInfo{icell}.CoordType,'scattered')
|
---|
172 | nbscattered=nbscattered+1;
|
---|
173 | nbcoord=nbcoord+1;
|
---|
174 | radius_name = rename_indexing(radius_name,Data.ListVarName);
|
---|
175 | theta_name = rename_indexing(theta_name,Data.ListVarName);
|
---|
176 | Data.ListVarName = [Data.ListVarName {radius_name} {theta_name}];
|
---|
177 | dim_name = rename_indexing('nb_point',Data.VarDimName);
|
---|
178 | Data.VarDimName=[Data.VarDimName {dim_name} {dim_name}];
|
---|
179 | nbvar=nbvar+2;
|
---|
180 | Data.VarAttribute{nbvar-1}.Role='coord_x';
|
---|
181 | check_unit=1;
|
---|
182 | if isfield(DataCell{ifield},'CoordUnit')
|
---|
183 | Data=rmfield(Data,'CoordUnit');
|
---|
184 | Data.VarAttribute{nbvar-1}.unit=DataCell{ifield}.CoordUnit;
|
---|
185 | elseif isfield(XmlData,'GeometryCalib')&& isfield(XmlData.GeometryCalib,'CoordUnit')
|
---|
186 | Data.VarAttribute{nbvar-1}.unit=XmlData.GeometryCalib.CoordUnit;% states that the output is in unit defined by GeometryCalib, then erased all projection objects with different units
|
---|
187 | else
|
---|
188 | check_unit=0;
|
---|
189 | end
|
---|
190 | Data.VarAttribute{nbvar}.Role='coord_y';
|
---|
191 | if check_degree
|
---|
192 | Data.VarAttribute{nbvar}.unit='degree';
|
---|
193 | elseif check_unit
|
---|
194 | Data.VarAttribute{nbvar}.unit=Data.VarAttribute{nbvar-1}.unit;
|
---|
195 | end
|
---|
196 |
|
---|
197 | %transform u,v into polar coordinates
|
---|
198 | X=DataCell{ifield}.(CellInfo{icell}.XName);
|
---|
199 | Y=DataCell{ifield}.(CellInfo{icell}.YName);
|
---|
200 | if isfield(CellInfo{icell},'VarIndex_vector_x')&& isfield(CellInfo{icell},'VarIndex_vector_y')
|
---|
201 | UName=DataCell{ifield}.ListVarName{CellInfo{icell}.VarIndex_vector_x};
|
---|
202 | VName=DataCell{ifield}.ListVarName{CellInfo{icell}.VarIndex_vector_y};
|
---|
203 | if ~isempty(Calib{ifield})
|
---|
204 | [X,Y,Z,DataCell{ifield}.(UName),DataCell{ifield}.(VName)]=...
|
---|
205 | phys_XYUV(DataCell{ifield},Calib{ifield},ZIndex);
|
---|
206 | end
|
---|
207 | end
|
---|
208 | [Theta,Radius] = cart2pol(X-origin_xy(1),Y-origin_xy(2));
|
---|
209 | Data.(radius_name)=Radius-radius_offset;
|
---|
210 | Data.(theta_name)=Theta*angle_scale-angle_offset;
|
---|
211 | if Z~=0
|
---|
212 | Data.Z=Z;
|
---|
213 | nbvar=nbvar+1;
|
---|
214 | Data.ListVarName = [Data.ListVarName {'Z'}];
|
---|
215 | Data.VarDimName=[Data.VarDimName {dim_name}];
|
---|
216 | Data.VarAttribute{nbvar}.Role='coord_z';
|
---|
217 | end
|
---|
218 | if isfield(CellInfo{icell},'VarIndex_scalar')
|
---|
219 | ScalarName=DataCell{ifield}.ListVarName{CellInfo{icell}.VarIndex_scalar};
|
---|
220 | ScalarName=rename_indexing(ScalarName,Data.ListVarName);
|
---|
221 | Data.(ScalarName)=DataCell{ifield}.(ScalarName);
|
---|
222 | nbvar=nbvar+1;
|
---|
223 | Data.ListVarName = [Data.ListVarName {ScalarName}];
|
---|
224 | Data.VarDimName=[Data.VarDimName {dim_name}];
|
---|
225 | Data.VarAttribute{nbvar}.Role='scalar';
|
---|
226 | end
|
---|
227 | if isfield(CellInfo{icell},'VarIndex_vector_x')&& isfield(CellInfo{icell},'VarIndex_vector_y')
|
---|
228 | U_r_name= rename_indexing(U_r_name,Data.ListVarName);
|
---|
229 | U_theta_name= rename_indexing(U_theta_name,Data.ListVarName);
|
---|
230 | Data.(U_r_name)=DataCell{ifield}.(UName).*cos(Theta)+DataCell{ifield}.(VName).*sin(Theta);%radial velocity
|
---|
231 | Data.(U_theta_name)=(-DataCell{ifield}.(UName).*sin(Theta)+DataCell{ifield}.(VName).*cos(Theta));%./(Data.X)%+radius_ref);% azimuthal velocity component
|
---|
232 | Data.ListVarName = [Data.ListVarName {U_r_name} {U_theta_name}];
|
---|
233 | Data.VarDimName=[Data.VarDimName {dim_name} {dim_name}];
|
---|
234 | Data.VarAttribute{nbvar+1}.Role='vector_x';
|
---|
235 | Data.VarAttribute{nbvar+2}.Role='vector_y';
|
---|
236 | nbvar=nbvar+2;
|
---|
237 | end
|
---|
238 | if isfield(CellInfo{icell},'VarIndex_errorflag')
|
---|
239 | error_flag_name=DataCell{ifield}.ListVarName{CellInfo{icell}.VarIndex_errorflag};
|
---|
240 | error_flag_newname= rename_indexing(error_flag_name,Data.ListVarName);
|
---|
241 | Data.(error_flag_newname)=DataCell{ifield}.(error_flag_name);
|
---|
242 | Data.ListVarName = [Data.ListVarName {error_flag_newname}];
|
---|
243 | Data.VarDimName=[Data.VarDimName {dim_name}];
|
---|
244 | nbvar=nbvar+1;
|
---|
245 | Data.VarAttribute{nbvar}.Role='errorflag';
|
---|
246 | end
|
---|
247 |
|
---|
248 | %caseof input fields on gridded coordinates (matrix)
|
---|
249 | elseif strcmp(CellInfo{icell}.CoordType,'grid')
|
---|
250 | if nbgrid==0% no gridded data yet, introduce the coordinate variables common to all gridded data
|
---|
251 | nbcoord=nbcoord+1;%add new radial coordinates for the first gridded field
|
---|
252 | radius_name = rename_indexing(radius_name,Data.ListVarName);
|
---|
253 | theta_name = rename_indexing(theta_name,Data.ListVarName);
|
---|
254 | Data.ListVarName = [Data.ListVarName {radius_name} {theta_name}];
|
---|
255 | Data.VarDimName=[Data.VarDimName {radius_name} {theta_name}];
|
---|
256 | nbvar=nbvar+2;
|
---|
257 | if check_reverse
|
---|
258 | Data.VarAttribute{nbvar-1}.Role='coord_y';
|
---|
259 | Data.VarAttribute{nbvar}.Role='coord_x';
|
---|
260 | else
|
---|
261 | Data.VarAttribute{nbvar-1}.Role='coord_x';
|
---|
262 | Data.VarAttribute{nbvar}.Role='coord_y';
|
---|
263 | end
|
---|
264 | check_unit=1;
|
---|
265 | if isfield(DataCell{ifield},'CoordUnit')
|
---|
266 | Data.VarAttribute{nbvar-1}.unit=DataCell{ifield}.CoordUnit;
|
---|
267 | elseif isfield(XmlData,'GeometryCalib')&& isfield(XmlData.GeometryCalib,'CoordUnit')
|
---|
268 | Data.VarAttribute{nbvar-1}.unit=XmlData.GeometryCalib.CoordUnit;% states that the output is in unit defined by GeometryCalib, then erased all projection objects with different units
|
---|
269 | else
|
---|
270 | check_unit=0;
|
---|
271 | end
|
---|
272 | if check_degree
|
---|
273 | Data.VarAttribute{nbvar}.unit='degree';
|
---|
274 | elseif check_unit
|
---|
275 | Data.VarAttribute{nbvar}.unit=Data.VarAttribute{nbvar-1}.unit;
|
---|
276 | end
|
---|
277 | end
|
---|
278 | if isfield(CellInfo{icell},'VarIndex_scalar')
|
---|
279 | nbgrid=nbgrid+1;
|
---|
280 | nbvar=nbvar+1;
|
---|
281 | Data.VarAttribute{nbvar}.Role='scalar';
|
---|
282 | FieldName{nbgrid}=DataCell{ifield}.ListVarName{CellInfo{icell}.VarIndex_scalar};
|
---|
283 | A{nbgrid}=DataCell{ifield}.(FieldName{nbgrid});
|
---|
284 | % Data.ListVarName=[Data.ListVarName {FieldName{nbgrid}}];
|
---|
285 | % Data.VarDimName=[Data.VarDimName {{theta_name,radius_name}}];
|
---|
286 | nbpoint(nbgrid)=numel(A{nbgrid});
|
---|
287 | check_scalar(nbgrid)=1;
|
---|
288 | coord_x{nbgrid}=DataCell{ifield}.(DataCell{ifield}.ListVarName{CellInfo{icell}.XIndex});
|
---|
289 | coord_y{nbgrid}=DataCell{ifield}.(DataCell{ifield}.ListVarName{CellInfo{icell}.YIndex});
|
---|
290 | ZInd(nbgrid)=ZIndex;
|
---|
291 | Calib_new{nbgrid}=Calib{ifield};
|
---|
292 | end
|
---|
293 | if isfield(CellInfo{icell},'VarIndex_vector_x')&& isfield(CellInfo{icell},'VarIndex_vector_y')
|
---|
294 | FieldName{nbgrid+1}=DataCell{ifield}.ListVarName{CellInfo{icell}.VarIndex_vector_x};
|
---|
295 | FieldName{nbgrid+2}=DataCell{ifield}.ListVarName{CellInfo{icell}.VarIndex_vector_y};
|
---|
296 | A{nbgrid+1}=DataCell{ifield}.(FieldName{nbgrid+1});
|
---|
297 | A{nbgrid+2}=DataCell{ifield}.(FieldName{nbgrid+2});
|
---|
298 | % Data.ListVarName=[Data.ListVarName {'U_r','U_theta'}];
|
---|
299 | %Data.VarDimName=[Data.VarDimName {{theta_name,radius_name}} {{theta_name,radius_name}}];
|
---|
300 | Data.VarAttribute{nbvar+1}.Role='vector_x';
|
---|
301 | Data.VarAttribute{nbvar+2}.Role='vector_y';
|
---|
302 | nbpoint([nbgrid+1 nbgrid+2])=numel(A{nbgrid+1});
|
---|
303 | check_vector(nbgrid+1)=1;
|
---|
304 | check_vector(nbgrid+2)=1;
|
---|
305 | coord_x{nbgrid+1}=DataCell{ifield}.(DataCell{ifield}.ListVarName{CellInfo{icell}.XIndex});
|
---|
306 | coord_y{nbgrid+1}=DataCell{ifield}.(DataCell{ifield}.ListVarName{CellInfo{icell}.YIndex});
|
---|
307 | coord_x{nbgrid+2}=DataCell{ifield}.(DataCell{ifield}.ListVarName{CellInfo{icell}.XIndex});
|
---|
308 | coord_y{nbgrid+2}=DataCell{ifield}.(DataCell{ifield}.ListVarName{CellInfo{icell}.YIndex});
|
---|
309 | ZInd(nbgrid+1)=ZIndex;
|
---|
310 | ZInd(nbgrid+2)=ZIndex;
|
---|
311 | Calib_new{nbgrid+1}=Calib{ifield};
|
---|
312 | Calib_new{nbgrid+2}=Calib{ifield};
|
---|
313 | nbgrid=nbgrid+2;
|
---|
314 | nbvar=nbvar+2;
|
---|
315 | end
|
---|
316 | end
|
---|
317 | end
|
---|
318 | end
|
---|
319 | end
|
---|
320 |
|
---|
321 | %% tranform cartesian to polar coordinates for gridded data
|
---|
322 | if nbgrid~=0
|
---|
323 | [A,Data.radius,Data.theta]=phys_Ima_polar(A,coord_x,coord_y,Calib_new,ZInd,origin_xy,radius_offset,angle_offset,angle_scale);
|
---|
324 | for icell=1:numel(A)
|
---|
325 | if icell<=numel(A)-1 && check_vector(icell)==1 && check_vector(icell+1)==1 %transform u,v into polar coordinates
|
---|
326 | theta=Data.theta/angle_scale-angle_offset;
|
---|
327 | [~,Theta]=meshgrid(Data.radius,theta);%grid in physical coordinates
|
---|
328 | U_r_name= rename_indexing(U_r_name,Data.ListVarName);
|
---|
329 | U_theta_name= rename_indexing(U_theta_name,Data.ListVarName);
|
---|
330 | Data.(U_r_name)=A{icell}.*cos(Theta)+A{icell+1}.*sin(Theta);%radial velocity
|
---|
331 | Data.(U_theta_name)=(-A{icell}.*sin(Theta)+A{icell+1}.*cos(Theta));% azimuthal velocity component
|
---|
332 | if check_reverse
|
---|
333 | Data.(U_theta_name)=(Data.(U_theta_name))';
|
---|
334 | Data.(U_r_name)=Data.(U_r_name)';
|
---|
335 | Data.ListVarName=[Data.ListVarName {U_theta_name,U_r_name}];
|
---|
336 | Data.VarDimName=[Data.VarDimName {{radius_name,theta_name}} {{radius_name,theta_name}}];
|
---|
337 | else
|
---|
338 | Data.ListVarName=[Data.ListVarName {U_r_name,U_theta_name}];
|
---|
339 | Data.VarDimName=[Data.VarDimName {{theta_name,radius_name}} {{theta_name,radius_name}}];
|
---|
340 | end
|
---|
341 | elseif ~check_vector(icell)% for scalar fields
|
---|
342 | FieldName{icell}= rename_indexing(FieldName{icell},Data.ListVarName);
|
---|
343 | Data.ListVarName=[Data.ListVarName FieldName(icell)];
|
---|
344 | if check_reverse
|
---|
345 | Data.(FieldName{icell})=A{icell}';
|
---|
346 | Data.VarDimName=[Data.VarDimName {{radius_name,theta_name}}];
|
---|
347 | else
|
---|
348 | Data.VarDimName=[Data.VarDimName {{theta_name,radius_name}}];
|
---|
349 | Data.(FieldName{icell})=A{icell};
|
---|
350 | end
|
---|
351 | end
|
---|
352 | end
|
---|
353 | end
|
---|
354 | if check_reverse
|
---|
355 | Data.(theta_name)=-Data.(theta_name);
|
---|
356 | end
|
---|
357 |
|
---|
358 |
|
---|
359 | %------------------------------------------------
|
---|
360 | %--- transform a single field into phys coordiantes
|
---|
361 | function [X,Y,Z,U,V]=phys_XYUV(Data,Calib,ZIndex)
|
---|
362 | %------------------------------------------------
|
---|
363 | %% set default output
|
---|
364 | %DataOut=Data;%default
|
---|
365 | %DataOut.CoordUnit=Calib.CoordUnit;% the output coord unit is set by the calibration parameters
|
---|
366 | X=[];%default output
|
---|
367 | Y=[];
|
---|
368 | Z=0;
|
---|
369 | U=[];
|
---|
370 | V=[];
|
---|
371 | %% transform X,Y coordinates for velocity fields (transform of an image or scalar done in phys_ima)
|
---|
372 | if isfield(Data,'X') &&isfield(Data,'Y')&&~isempty(Data.X) && ~isempty(Data.Y)
|
---|
373 | [X,Y,Z]=phys_XYZ(Calib,Data.X,Data.Y,ZIndex);
|
---|
374 | Dt=1; %default
|
---|
375 | if isfield(Data,'dt')&&~isempty(Data.dt)
|
---|
376 | Dt=Data.dt;
|
---|
377 | end
|
---|
378 | if isfield(Data,'Dt')&&~isempty(Data.Dt)
|
---|
379 | Dt=Data.Dt;
|
---|
380 | end
|
---|
381 | if isfield(Data,'U')&&isfield(Data,'V')&&~isempty(Data.U) && ~isempty(Data.V)
|
---|
382 | [XOut_1,YOut_1]=phys_XYZ(Calib,Data.X-Data.U/2,Data.Y-Data.V/2,ZIndex);
|
---|
383 | [XOut_2,YOut_2]=phys_XYZ(Calib,Data.X+Data.U/2,Data.Y+Data.V/2,ZIndex);
|
---|
384 | U=(XOut_2-XOut_1)/Dt;
|
---|
385 | V=(YOut_2-YOut_1)/Dt;
|
---|
386 | end
|
---|
387 | end
|
---|
388 |
|
---|
389 | %%%%%%%%%%%%%%%%%%%%
|
---|
390 | % tranform gridded field into polar coordiantes on a regular polar grid,
|
---|
391 | % transform to phys coordiantes if requested by calibration input
|
---|
392 | function [A_out,radius,theta]=phys_Ima_polar(A,coord_x,coord_y,CalibIn,ZIndex,origin_xy,radius_offset,angle_offset,angle_scale)
|
---|
393 | rcorner=[];
|
---|
394 | thetacorner=[];
|
---|
395 | npx=[];
|
---|
396 | npy=[];
|
---|
397 | for icell=1:length(A)
|
---|
398 | siz=size(A{icell});
|
---|
399 | npx(icell)=siz(2);
|
---|
400 | npy(icell)=siz(1);
|
---|
401 | x_edge=[linspace(coord_x{icell}(1),coord_x{icell}(end),npx(icell)) coord_x{icell}(end)*ones(1,npy(icell))...
|
---|
402 | linspace(coord_x{icell}(end),coord_x{icell}(1),npx(icell)) coord_x{icell}(1)*ones(1,npy(icell))];%x coordinates of the image edge(four sides)
|
---|
403 | y_edge=[coord_y{icell}(1)*ones(1,npx(icell)) linspace(coord_y{icell}(1),coord_y{icell}(end),npy(icell))...
|
---|
404 | coord_y{icell}(end)*ones(1,npx(icell)) linspace(coord_y{icell}(end),coord_y{icell}(1),npy(icell))];%y coordinates of the image edge(four sides)
|
---|
405 |
|
---|
406 | % transform edges into phys coordinates if requested
|
---|
407 | if ~isempty(CalibIn{icell})
|
---|
408 | [x_edge,y_edge]=phys_XYZ(CalibIn{icell},x_edge,y_edge,ZIndex(icell));% physical coordinates of the image edge
|
---|
409 | end
|
---|
410 |
|
---|
411 | %transform the corner coordinates into polar ones
|
---|
412 | x_edge=x_edge-origin_xy(1);%shift to the origin of the polar coordinates
|
---|
413 | y_edge=y_edge-origin_xy(2);%shift to the origin of the polar coordinates
|
---|
414 | [theta_edge,r_edge] = cart2pol(x_edge,y_edge);%theta and X are the polar coordinates angle and radius
|
---|
415 | if (max(theta_edge)-min(theta_edge))>pi %if the polar origin is inside the image
|
---|
416 | r_edge=[0 max(r_edge)];
|
---|
417 | theta_edge=[-pi pi];
|
---|
418 | end
|
---|
419 | rcorner=[rcorner r_edge];
|
---|
420 | thetacorner=[thetacorner theta_edge];
|
---|
421 | end
|
---|
422 | nbpoint=max(npx.*npy);
|
---|
423 | Min_r=min(rcorner);
|
---|
424 | Max_r=max(rcorner);
|
---|
425 | Min_theta=min(thetacorner)*angle_scale;
|
---|
426 | Max_theta=max(thetacorner)*angle_scale;
|
---|
427 | Dr=round_uvmat((Max_r-Min_r)/sqrt(nbpoint));
|
---|
428 | Dtheta=round_uvmat((Max_theta-Min_theta)/sqrt(nbpoint));% get a simple mesh for the rescaled angle
|
---|
429 | radius=Min_r:Dr:Max_r;% polar coordinates for projections
|
---|
430 | theta=Min_theta:Dtheta:Max_theta;
|
---|
431 | %theta=Max_theta:-Dtheta:Min_theta;
|
---|
432 | [Radius,Theta]=meshgrid(radius,theta/angle_scale);%grid in polar coordinates (angles in radians)
|
---|
433 | %transform X, Y in cartesian
|
---|
434 | [X,Y] = pol2cart(Theta,Radius);% cartesian coordinates associated to the grid in polar coordinates
|
---|
435 | X=X+origin_xy(1);%shift to the origin of the polar coordinates
|
---|
436 | Y=Y+origin_xy(2);%shift to the origin of the polar coordinates
|
---|
437 | radius=radius-radius_offset;
|
---|
438 | theta=theta-angle_offset*angle_scale;
|
---|
439 | [np_theta,np_r]=size(Radius);
|
---|
440 |
|
---|
441 | for icell=1:length(A)
|
---|
442 | XIMA=X;
|
---|
443 | YIMA=Y;
|
---|
444 | if ~isempty(CalibIn{icell})%transform back to pixel if calibration parameters are introduced
|
---|
445 | Z=0; %default
|
---|
446 | if isfield(CalibIn{icell},'SliceCoord') %.Z= index of plane
|
---|
447 | if ZIndex(icell)==0
|
---|
448 | ZIndex(icell)=1;
|
---|
449 | end
|
---|
450 | SliceCoord=CalibIn{icell}.SliceCoord(ZIndex(icell),:);
|
---|
451 | Z=SliceCoord(3); %to generalize for non-parallel planes
|
---|
452 | if isfield(CalibIn{icell},'SliceAngle')
|
---|
453 | norm_plane=angle2normal(CalibIn{icell}.SliceAngle);
|
---|
454 | Z=Z-(norm_plane(1)*(X-SliceCoord(1))+norm_plane(2)*(Y-SliceCoord(2)))/norm_plane(3);
|
---|
455 | end
|
---|
456 | end
|
---|
457 | [XIMA,YIMA]=px_XYZ(CalibIn{icell},X,Y,Z);%corresponding image indices for each point in the real space grid
|
---|
458 | end
|
---|
459 | Dx=(coord_x{icell}(end)-coord_x{icell}(1))/(npx(icell)-1);
|
---|
460 | Dy=(coord_y{icell}(end)-coord_y{icell}(1))/(npy(icell)-1);
|
---|
461 | indx_ima=1+round((XIMA-coord_x{icell}(1))/Dx);%indices of the initial matrix close to the points of the new grid
|
---|
462 | %indy_ima=1+round((YIMA-coord_y{icell}(1))/Dy);
|
---|
463 | indy_ima=1+round((coord_y{icell}(end)-YIMA)/Dy);
|
---|
464 | Delta_x=1+(XIMA-coord_x{icell}(1))/Dx-indx_ima;%error in the index discretisation
|
---|
465 | Delta_y=1+(coord_y{icell}(end)-YIMA)/Dy-indy_ima;
|
---|
466 | XIMA=reshape(indx_ima,1,[]);%indices reorganized in 'line'
|
---|
467 | YIMA=reshape(indy_ima,1,[]);%indices reorganized in 'line'
|
---|
468 | flagin=XIMA>=1 & XIMA<=npx(icell) & YIMA >=1 & YIMA<=npy(icell);%flagin=1 inside the original image
|
---|
469 | siz=size(A{icell});
|
---|
470 | checkuint8=isa(A{icell},'uint8');%check for image input with 8 bits
|
---|
471 | checkuint16=isa(A{icell},'uint16');%check for image input with 16 bits
|
---|
472 | A{icell}=double(A{icell});
|
---|
473 | if numel(siz)==2 %(B/W images)
|
---|
474 | vec_A=reshape(A{icell}(:,:,1),1,[]);%put the original image in line
|
---|
475 | ind_in=find(flagin);
|
---|
476 | ind_out=find(~flagin);
|
---|
477 | ICOMB=((XIMA-1)*npy(icell)+(npy(icell)+1-YIMA));% indices in vec_A
|
---|
478 | ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A
|
---|
479 | vec_B(ind_in)=vec_A(ICOMB);
|
---|
480 | vec_B(ind_out)=zeros(size(ind_out));
|
---|
481 | A_out{icell}=reshape(vec_B,np_theta,np_r);%new image in real coordinates
|
---|
482 | DA_y=circshift(A_out{icell},-1,1)-A_out{icell};% derivative
|
---|
483 | DA_y(end,:)=0;
|
---|
484 | DA_x=circshift(A_out{icell},-1,2)-A_out{icell};
|
---|
485 | DA_x(:,end)=0;
|
---|
486 | A_out{icell}=A_out{icell}+Delta_x.*DA_x+Delta_y.*DA_y;%linear interpolation
|
---|
487 | else
|
---|
488 | for icolor=1:siz(3)
|
---|
489 | vec_A=reshape(A{icell}(:,:,icolor),1,[]);%put the original image in line
|
---|
490 | ind_in=find(flagin);
|
---|
491 | ind_out=find(~flagin);
|
---|
492 | ICOMB=((XIMA-1)*npy(icell)+(npy(icell)+1-YIMA));
|
---|
493 | ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A
|
---|
494 | vec_B(ind_in)=vec_A(ICOMB);
|
---|
495 | vec_B(ind_out)=zeros(size(ind_out));
|
---|
496 | A_out{icell}(:,:,icolor)=reshape(vec_B,np_theta,np_r);%new image in real coordinates
|
---|
497 | DA_y=circshift(A_out{icell}(:,:,icolor),-1,1)-A_out{icell}(:,:,icolor);
|
---|
498 | DA_y(end,:)=0;
|
---|
499 | DA_x=circshift(A_out{icell}(:,:,icolor),-1,2)-A_out{icell}(:,:,icolor);
|
---|
500 | DA_x(:,end)=0;
|
---|
501 | A_out{icell}(:,:,icolor)=A_out{icell}(:,:,icolor)+Delta_x.*DA_x+Delta_y.*DA_y;%linear interpolation
|
---|
502 | end
|
---|
503 | end
|
---|
504 | if checkuint8
|
---|
505 | A_out{icell}=uint8(A_out{icell});
|
---|
506 | elseif checkuint16
|
---|
507 | A_out{icell}=uint16(A_out{icell});
|
---|
508 | end
|
---|
509 | end
|
---|
510 |
|
---|