source: trunk/src/transform_field/phys_polar.m @ 567

Last change on this file since 567 was 567, checked in by sommeria, 12 years ago

LIF calibration improved

File size: 11.1 KB
Line 
1% transform image coordinates (px) to polar physical coordinates
2%[DataOut,DataOut_1]=phys_polar(varargin)
3%
4% OUTPUT:
5% DataOut: structure of modified data field: .X=radius, .Y=azimuth angle, .U, .V are radial and azimuthal velocity components
6% DataOut_1:  second data field (if two fields are in input)
7%
8%INPUT:
9% Data:  structure of input data (like UvData)
10% CalibData= structure containing the field .GeometryCalib with calibration parameters
11% Data_1:  second input field (not mandatory)
12% CalibData_1= calibration parameters for the second field
13
14function [DataOut,DataOut_1]=phys_polar(varargin)
15Calib{1}=[];
16if nargin==2||nargin==4
17    Data=varargin{1};
18    DataOut=Data;%default
19    DataOut_1=[];%default
20    CalibData=varargin{2};
21    if isfield(CalibData,'GeometryCalib')
22        Calib{1}=CalibData.GeometryCalib;
23    end
24    Calib{2}=Calib{1};
25else
26    DataOut.Txt='wrong input: need two or four structures';
27end
28test_1=0;
29if nargin==4% case of two input fields
30    test_1=1;
31    Data_1=varargin{3};
32    DataOut_1=Data_1;%default
33    CalibData_1=varargin{4};
34    if isfield(CalibData_1,'GeometryCalib')
35        Calib{2}=CalibData_1.GeometryCalib;
36    end
37end
38
39%parameters for polar coordinates (taken from the calibration data of the first field)
40%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
41origin_xy=[0 0];%center for the polar coordinates in the original x,y coordinates
42if isfield(CalibData,'PolarCentre') && isnumeric(CalibData.PolarCentre)
43    if isequal(length(CalibData.PolarCentre),2);
44        origin_xy= CalibData.PolarCentre;
45    end
46end
47radius_offset=0;%reference radius used to offset the radial coordinate r
48angle_offset=0; %reference angle used as new origin of the polar angle (= axis Ox by default)
49if isfield(CalibData,'PolarReferenceRadius') && isnumeric(CalibData.PolarReferenceRadius)
50    radius_offset=CalibData.PolarReferenceRadius;
51end
52if radius_offset > 0
53    angle_scale=radius_offset; %the azimuth is rescale in terms of the length along the reference radius
54else
55    angle_scale=180/pi; %polar angle in degrees
56end
57if isfield(CalibData,'PolarReferenceAngle') && isnumeric(CalibData.PolarReferenceAngle)
58    angle_offset=CalibData.PolarReferenceAngle; %offset angle (in unit of the final angle, degrees or arc length along the reference radius))
59end
60% new x coordinate = radius-radius_offset;
61% new y coordinate = theta*angle_scale-angle_offset
62
63%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64
65iscalar=0;
66%transform first field to cartesian phys coordiantes
67if  ~isempty(Calib{1})
68    DataOut=phys_1(Data,Calib{1},origin_xy,radius_offset,angle_offset,angle_scale);
69    %case of images or scalar
70    if isfield(Data,'A')&isfield(Data,'AX')&~isempty(Data.AX) & isfield(Data,'AY')&...
71                                           ~isempty(Data.AY)&length(Data.A)>1
72        iscalar=1;
73        A{1}=Data.A;
74    end
75    %transform of X,Y coordinates for vector fields
76    if isfield(Data,'ZIndex')&~isempty(Data.ZIndex)
77        ZIndex=Data.ZIndex;
78    else
79        ZIndex=0;
80    end
81end
82
83%transform second field (if exists) to cartesian phys coordiantes
84if test_1
85    DataOut_1=phys_1(Data_1,Calib{2},origin_xy,radius_offset,angle_offset,angle_scale);
86    if isfield(Data_1,'A')&isfield(Data_1,'AX')&~isempty(Data_1.AX) & isfield(Data_1,'AY')&...
87                                       ~isempty(Data_1.AY)&length(Data_1.A)>1
88          iscalar=iscalar+1;
89          Calib{iscalar}=Calib{2};
90          A{iscalar}=Data_1.A;
91          if isfield(Data_1,'ZIndex')&~isequal(Data_1.ZIndex,ZIndex)
92              DataOut.Txt='inconsistent plane indexes in the two input fields';
93          end
94          if iscalar==1% case for which only the second field is a scalar
95               [A,AX,AY]=phys_Ima_polar(A,Calib,ZIndex,origin_xy,radius_offset,angle_offset,angle_scale);
96               DataOut_1.A=A{1};
97               DataOut_1.AX=AX;
98               DataOut_1.AY=AY;
99               return
100          end
101    end
102end
103if iscalar~=0
104    [A,AX,AY]=phys_Ima_polar(A,Calib,ZIndex,origin_xy,radius_offset,angle_offset,angle_scale);%
105    DataOut.A=A{1};
106    DataOut.AX=AX;
107    DataOut.AY=AY;
108    if iscalar==2
109        DataOut_1.A=A{2};
110        DataOut_1.AX=AX;
111        DataOut_1.AY=AY;
112    end
113end
114
115
116
117
118%------------------------------------------------
119function DataOut=phys_1(Data,Calib,origin_xy,radius_offset,angle_offset,angle_scale)
120
121DataOut=Data;
122% DataOut.CoordUnit=Calib.CoordUnit; %put flag for physical coordinates
123if isfield(Calib,'SliceCoord')
124    DataOut.PlaneCoord=Calib.SliceCoord;%to generalise for any plane
125end
126
127if isfield(Data,'CoordUnit')%&& isequal(Data.CoordType,'px')&& ~isempty(Calib)
128    if isfield(Calib,'CoordUnit')
129        DataOut.CoordUnit=Calib.CoordUnit;
130    else
131        DataOut.CoordUnit='cm'; %default
132    end
133    DataOut.TimeUnit='s';
134    %transform of X,Y coordinates for vector fields
135    if isfield(Data,'ZIndex') && ~isempty(Data.ZIndex)&&~isnan(Data.ZIndex)
136        Z=Data.ZIndex;
137    else
138        Z=0;
139    end
140    if isfield(Data,'X') &isfield(Data,'Y')&~isempty(Data.X) & ~isempty(Data.Y)
141        [DataOut.X,DataOut.Y,DataOut.Z]=phys_XYZ(Calib,Data.X,Data.Y,Z); %transform from pixels to physical
142        DataOut.X=DataOut.X-origin_xy(1);%origin of coordinates at the tank center
143        DataOut.Y=DataOut.Y-origin_xy(2);%origin of coordinates at the tank center
144        [theta,DataOut.X] = cart2pol(DataOut.X,DataOut.Y);%theta  and X are the polar coordinates angle and radius
145          %shift and renormalize the polar coordinates
146        DataOut.X=DataOut.X-radius_offset;%
147        DataOut.Y=theta*angle_scale-angle_offset;% normalized angle: distance along reference radius
148        %transform velocity field if exists
149        if isfield(Data,'U')&isfield(Data,'V')&~isempty(Data.U) & ~isempty(Data.V)& isfield(Data,'dt')
150            if ~isempty(Data.dt)
151            [XOut_1,YOut_1]=phys_XYZ(Calib,Data.X-Data.U/2,Data.Y-Data.V/2,Z);
152            [XOut_2,YOut_2]=phys_XYZ(Calib,Data.X+Data.U/2,Data.Y+Data.V/2,Z);
153            UX=(XOut_2-XOut_1)/Data.dt;
154            VY=(YOut_2-YOut_1)/Data.dt;     
155            %transform u,v into polar coordiantes
156            DataOut.U=UX.*cos(theta)+VY.*sin(theta);%radial velocity
157            DataOut.V=(-UX.*sin(theta)+VY.*cos(theta));%./(DataOut.X)%+radius_ref);%angular velocity calculated
158            %shift and renormalize the angular velocity
159            end
160        end
161        %transform of spatial derivatives
162        if isfield(Data,'X') && ~isempty(Data.X) && isfield(Data,'DjUi') && ~isempty(Data.DjUi)...
163                && isfield(Data,'dt')
164            if ~isempty(Data.dt)
165                % estimate the Jacobian matrix DXpx/DXphys
166                for ip=1:length(Data.X)
167                    [Xp1,Yp1]=phys_XYZ(Calib,Data.X(ip)+0.5,Data.Y(ip),Z);
168                    [Xm1,Ym1]=phys_XYZ(Calib,Data.X(ip)-0.5,Data.Y(ip),Z);
169                    [Xp2,Yp2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)+0.5,Z);
170                    [Xm2,Ym2]=phys_XYZ(Calib,Data.X(ip),Data.Y(ip)-0.5,Z);
171                    %Jacobian matrix DXpphys/DXpx
172                    DjXi(1,1)=(Xp1-Xm1);
173                    DjXi(2,1)=(Yp1-Ym1);
174                    DjXi(1,2)=(Xp2-Xm2);
175                    DjXi(2,2)=(Yp2-Ym2);
176                    DjUi(:,:)=Data.DjUi(ip,:,:);
177                    DjUi=(DjXi*DjUi')/DjXi;% =J-1*M*J , curvature effects (derivatives of J) neglected
178                    DataOut.DjUi(ip,:,:)=DjUi';
179                end
180                DataOut.DjUi =  DataOut.DjUi/Data.dt;   %     min(Data.DjUi(:,1,1))=DUDX
181            end
182        end
183    end
184end
185
186
187%%%%%%%%%%%%%%%%%%%%
188function [A_out,Rangx,Rangy]=phys_Ima_polar(A,CalibIn,ZIndex,origin_xy,radius_offset,angle_offset,angle_scale)
189xcorner=[];
190ycorner=[];
191npx=[];
192npy=[];
193for icell=1:length(A)
194    siz=size(A{icell});
195    npx=[npx siz(2)];
196    npy=[npy siz(1)];
197    zphys=0; %default
198    if isfield(CalibIn{icell},'SliceCoord') %.Z= index of plane
199       SliceCoord=CalibIn{icell}.SliceCoord(ZIndex,:);
200       zphys=SliceCoord(3); %to generalize for non-parallel planes
201    end
202    xima=[0.5 siz(2)-0.5 0.5 siz(2)-0.5];%image coordiantes of corners
203    yima=[0.5 0.5 siz(1)-0.5 siz(1)-0.5];
204    [xcorner_new,ycorner_new]=phys_XYZ(CalibIn{icell},xima,yima,ZIndex);%corresponding physical coordinates
205    %transform the corner coordinates into polar ones   
206    xcorner_new=xcorner_new-origin_xy(1);%shift to the origin of the polar coordinates
207    ycorner_new=ycorner_new-origin_xy(2);%shift to the origin of the polar coordinates       
208    [theta,xcorner_new] = cart2pol(xcorner_new,ycorner_new);%theta  and X are the polar coordinates angle and radius
209    if (max(theta)-min(theta))>pi   %if the polar origin is inside the image
210        xcorner_new=[0 max(xcorner_new)];
211        theta=[-pi pi];
212    end
213          %shift and renormalize the polar coordinates
214    xcorner_new=xcorner_new-radius_offset;%
215    ycorner_new=theta*angle_scale-angle_offset;% normalized angle: distance along reference radius
216    xcorner=[xcorner xcorner_new];
217    ycorner=[ycorner ycorner_new];
218end
219Rangx(1)=min(xcorner);
220Rangx(2)=max(xcorner);
221Rangy(2)=min(ycorner);
222Rangy(1)=max(ycorner);
223% test_multi=(max(npx)~=min(npx)) | (max(npy)~=min(npy));
224npx=max(npx);
225npy=max(npy);
226x=linspace(Rangx(1),Rangx(2),npx);
227y=linspace(Rangy(1),Rangy(2),npy);
228[X,Y]=meshgrid(x,y);%grid in physical coordinates
229%transform X, Y in cartesian
230X=X+radius_offset;%
231Y=(Y+angle_offset)/angle_scale;% normalized angle: distance along reference radius
232[X,Y] = pol2cart(Y,X);
233X=X+origin_xy(1);%shift to the origin of the polar coordinates
234Y=Y+origin_xy(2);%shift to the origin of the polar coordinates
235for icell=1:length(A)
236    siz=size(A{icell});
237    [XIMA,YIMA]=px_XYZ(CalibIn{icell},X,Y,zphys);%corresponding image indices for each point in the real space grid
238    XIMA=reshape(round(XIMA),1,npx*npy);%indices reorganized in 'line'
239    YIMA=reshape(round(YIMA),1,npx*npy);
240    flagin=XIMA>=1 & XIMA<=npx & YIMA >=1 & YIMA<=npy;%flagin=1 inside the original image
241    if numel(siz)==2 %(B/W images)
242        vec_A=reshape(A{icell}(:,:,1),1,npx*npy);%put the original image in line
243        ind_in=find(flagin);
244        ind_out=find(~flagin);
245        ICOMB=((XIMA-1)*npy+(npy+1-YIMA));
246        ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A
247        vec_B(ind_in)=vec_A(ICOMB);
248        vec_B(ind_out)=zeros(size(ind_out));
249        A_out{icell}=reshape(vec_B,npy,npx);%new image in real coordinates
250    else
251        for icolor=1:siz(3)
252                vec_A=reshape(A{icell}(:,:,icolor),1,npx*npy);%put the original image in line
253                ind_in=find(flagin);
254                ind_out=find(~flagin);
255                ICOMB=((XIMA-1)*npy+(npy+1-YIMA));
256                ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A
257                vec_B(ind_in)=vec_A(ICOMB);
258                vec_B(ind_out)=zeros(size(ind_out));
259                A_out{icell}(:,:,icolor)=reshape(vec_B,npy,npx);%new image in real coordinates
260        end
261    end
262end
263
Note: See TracBrowser for help on using the repository browser.